New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcco2 | GIF version |
Description: A composition law for class substitution. Importantly, x may occur free in the class expression substituted for A. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
sbcco2.1 | ⊢ (x = y → A = B) |
Ref | Expression |
---|---|
sbcco2 | ⊢ ([̣x / y]̣[̣B / x]̣φ ↔ [̣A / x]̣φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3051 | . 2 ⊢ ([x / y][̣B / x]̣φ ↔ [̣x / y]̣[̣B / x]̣φ) | |
2 | nfv 1619 | . . 3 ⊢ Ⅎy[̣A / x]̣φ | |
3 | sbcco2.1 | . . . . 5 ⊢ (x = y → A = B) | |
4 | 3 | eqcoms 2356 | . . . 4 ⊢ (y = x → A = B) |
5 | dfsbcq 3049 | . . . . 5 ⊢ (A = B → ([̣A / x]̣φ ↔ [̣B / x]̣φ)) | |
6 | 5 | bicomd 192 | . . . 4 ⊢ (A = B → ([̣B / x]̣φ ↔ [̣A / x]̣φ)) |
7 | 4, 6 | syl 15 | . . 3 ⊢ (y = x → ([̣B / x]̣φ ↔ [̣A / x]̣φ)) |
8 | 2, 7 | sbie 2038 | . 2 ⊢ ([x / y][̣B / x]̣φ ↔ [̣A / x]̣φ) |
9 | 1, 8 | bitr3i 242 | 1 ⊢ ([̣x / y]̣[̣B / x]̣φ ↔ [̣A / x]̣φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 [wsb 1648 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |