New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcel2gv | GIF version |
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbcel2gv | ⊢ (B ∈ V → ([̣B / x]̣A ∈ x ↔ A ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . 2 ⊢ (y = B → ([y / x]A ∈ x ↔ [̣B / x]̣A ∈ x)) | |
2 | eleq2 2414 | . 2 ⊢ (y = B → (A ∈ y ↔ A ∈ B)) | |
3 | nfv 1619 | . . 3 ⊢ Ⅎx A ∈ y | |
4 | eleq2 2414 | . . 3 ⊢ (x = y → (A ∈ x ↔ A ∈ y)) | |
5 | 3, 4 | sbie 2038 | . 2 ⊢ ([y / x]A ∈ x ↔ A ∈ y) |
6 | 1, 2, 5 | vtoclbg 2916 | 1 ⊢ (B ∈ V → ([̣B / x]̣A ∈ x ↔ A ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 [wsb 1648 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: csbvarg 3164 |
Copyright terms: Public domain | W3C validator |