| Step | Hyp | Ref
| Expression |
| 1 | | elex 2868 |
. 2
⊢ (A ∈ V → A ∈ V) |
| 2 | | sbcexg 3097 |
. . . 4
⊢ (A ∈ V →
([̣A / x]̣∃w(w = {y ∣ φ} ∧
w ∈
B) ↔ ∃w[̣A /
x]̣(w = {y ∣ φ} ∧ w ∈ B))) |
| 3 | | sbcang 3090 |
. . . . . 6
⊢ (A ∈ V →
([̣A / x]̣(w =
{y ∣
φ} ∧
w ∈
B) ↔ ([̣A / x]̣w =
{y ∣
φ} ∧
[̣A / x]̣w ∈ B))) |
| 4 | | eqabb 2459 |
. . . . . . . . . 10
⊢ (w = {y ∣ φ}
↔ ∀y(y ∈ w ↔
φ)) |
| 5 | 4 | sbcbii 3102 |
. . . . . . . . 9
⊢ ([̣A / x]̣w =
{y ∣
φ} ↔ [̣A / x]̣∀y(y ∈ w ↔ φ)) |
| 6 | | sbcalg 3095 |
. . . . . . . . . 10
⊢ (A ∈ V →
([̣A / x]̣∀y(y ∈ w ↔ φ)
↔ ∀y[̣A /
x]̣(y ∈ w ↔ φ))) |
| 7 | | sbcbig 3093 |
. . . . . . . . . . . 12
⊢ (A ∈ V →
([̣A / x]̣(y ∈ w ↔
φ) ↔ ([̣A / x]̣y ∈ w ↔
[̣A / x]̣φ))) |
| 8 | | sbcg 3112 |
. . . . . . . . . . . . 13
⊢ (A ∈ V →
([̣A / x]̣y ∈ w ↔
y ∈
w)) |
| 9 | 8 | bibi1d 310 |
. . . . . . . . . . . 12
⊢ (A ∈ V →
(([̣A / x]̣y ∈ w ↔
[̣A / x]̣φ)
↔ (y ∈ w ↔
[̣A / x]̣φ))) |
| 10 | 7, 9 | bitrd 244 |
. . . . . . . . . . 11
⊢ (A ∈ V →
([̣A / x]̣(y ∈ w ↔
φ) ↔ (y ∈ w ↔ [̣A / x]̣φ))) |
| 11 | 10 | albidv 1625 |
. . . . . . . . . 10
⊢ (A ∈ V →
(∀y[̣A /
x]̣(y ∈ w ↔ φ)
↔ ∀y(y ∈ w ↔
[̣A / x]̣φ))) |
| 12 | 6, 11 | bitrd 244 |
. . . . . . . . 9
⊢ (A ∈ V →
([̣A / x]̣∀y(y ∈ w ↔ φ)
↔ ∀y(y ∈ w ↔
[̣A / x]̣φ))) |
| 13 | 5, 12 | syl5bb 248 |
. . . . . . . 8
⊢ (A ∈ V →
([̣A / x]̣w =
{y ∣
φ} ↔ ∀y(y ∈ w ↔ [̣A / x]̣φ))) |
| 14 | | eqabb 2459 |
. . . . . . . 8
⊢ (w = {y ∣ [̣A /
x]̣φ} ↔ ∀y(y ∈ w ↔ [̣A / x]̣φ)) |
| 15 | 13, 14 | syl6bbr 254 |
. . . . . . 7
⊢ (A ∈ V →
([̣A / x]̣w =
{y ∣
φ} ↔ w = {y ∣ [̣A /
x]̣φ})) |
| 16 | | sbcabel.1 |
. . . . . . . . 9
⊢
ℲxB |
| 17 | 16 | nfcri 2484 |
. . . . . . . 8
⊢ Ⅎx w ∈ B |
| 18 | 17 | sbcgf 3110 |
. . . . . . 7
⊢ (A ∈ V →
([̣A / x]̣w ∈ B ↔
w ∈
B)) |
| 19 | 15, 18 | anbi12d 691 |
. . . . . 6
⊢ (A ∈ V →
(([̣A / x]̣w =
{y ∣
φ} ∧
[̣A / x]̣w ∈ B) ↔
(w = {y
∣ [̣A / x]̣φ}
∧ w ∈ B))) |
| 20 | 3, 19 | bitrd 244 |
. . . . 5
⊢ (A ∈ V →
([̣A / x]̣(w =
{y ∣
φ} ∧
w ∈
B) ↔ (w = {y ∣ [̣A /
x]̣φ} ∧
w ∈
B))) |
| 21 | 20 | exbidv 1626 |
. . . 4
⊢ (A ∈ V →
(∃w[̣A /
x]̣(w = {y ∣ φ} ∧ w ∈ B) ↔
∃w(w = {y ∣
[̣A / x]̣φ}
∧ w ∈ B))) |
| 22 | 2, 21 | bitrd 244 |
. . 3
⊢ (A ∈ V →
([̣A / x]̣∃w(w = {y ∣ φ} ∧
w ∈
B) ↔ ∃w(w = {y ∣ [̣A /
x]̣φ} ∧
w ∈
B))) |
| 23 | | df-clel 2349 |
. . . 4
⊢ ({y ∣ φ} ∈
B ↔ ∃w(w = {y ∣ φ} ∧ w ∈ B)) |
| 24 | 23 | sbcbii 3102 |
. . 3
⊢ ([̣A / x]̣{y ∣ φ} ∈ B ↔
[̣A / x]̣∃w(w = {y ∣ φ} ∧
w ∈
B)) |
| 25 | | df-clel 2349 |
. . 3
⊢ ({y ∣
[̣A / x]̣φ}
∈ B
↔ ∃w(w = {y ∣
[̣A / x]̣φ}
∧ w ∈ B)) |
| 26 | 22, 24, 25 | 3bitr4g 279 |
. 2
⊢ (A ∈ V →
([̣A / x]̣{y ∣ φ} ∈ B ↔
{y ∣
[̣A / x]̣φ}
∈ B)) |
| 27 | 1, 26 | syl 15 |
1
⊢ (A ∈ V → ([̣A / x]̣{y ∣ φ} ∈ B ↔
{y ∣
[̣A / x]̣φ}
∈ B)) |