NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcabel GIF version

Theorem sbcabel 3124
Description: Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcabel.1 xB
Assertion
Ref Expression
sbcabel (A V → ([̣A / x]̣{y φ} B ↔ {y A / xφ} B))
Distinct variable groups:   y,A   x,y
Allowed substitution hints:   φ(x,y)   A(x)   B(x,y)   V(x,y)

Proof of Theorem sbcabel
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 elex 2868 . 2 (A VA V)
2 sbcexg 3097 . . . 4 (A V → ([̣A / xw(w = {y φ} w B) ↔ wA / x]̣(w = {y φ} w B)))
3 sbcang 3090 . . . . . 6 (A V → ([̣A / x]̣(w = {y φ} w B) ↔ ([̣A / xw = {y φ} A / xw B)))
4 abeq2 2459 . . . . . . . . . 10 (w = {y φ} ↔ y(y wφ))
54sbcbii 3102 . . . . . . . . 9 ([̣A / xw = {y φ} ↔ [̣A / xy(y wφ))
6 sbcalg 3095 . . . . . . . . . 10 (A V → ([̣A / xy(y wφ) ↔ yA / x]̣(y wφ)))
7 sbcbig 3093 . . . . . . . . . . . 12 (A V → ([̣A / x]̣(y wφ) ↔ ([̣A / xy w ↔ [̣A / xφ)))
8 sbcg 3112 . . . . . . . . . . . . 13 (A V → ([̣A / xy wy w))
98bibi1d 310 . . . . . . . . . . . 12 (A V → (([̣A / xy w ↔ [̣A / xφ) ↔ (y w ↔ [̣A / xφ)))
107, 9bitrd 244 . . . . . . . . . . 11 (A V → ([̣A / x]̣(y wφ) ↔ (y w ↔ [̣A / xφ)))
1110albidv 1625 . . . . . . . . . 10 (A V → (yA / x]̣(y wφ) ↔ y(y w ↔ [̣A / xφ)))
126, 11bitrd 244 . . . . . . . . 9 (A V → ([̣A / xy(y wφ) ↔ y(y w ↔ [̣A / xφ)))
135, 12syl5bb 248 . . . . . . . 8 (A V → ([̣A / xw = {y φ} ↔ y(y w ↔ [̣A / xφ)))
14 abeq2 2459 . . . . . . . 8 (w = {y A / xφ} ↔ y(y w ↔ [̣A / xφ))
1513, 14syl6bbr 254 . . . . . . 7 (A V → ([̣A / xw = {y φ} ↔ w = {y A / xφ}))
16 sbcabel.1 . . . . . . . . 9 xB
1716nfcri 2484 . . . . . . . 8 x w B
1817sbcgf 3110 . . . . . . 7 (A V → ([̣A / xw Bw B))
1915, 18anbi12d 691 . . . . . 6 (A V → (([̣A / xw = {y φ} A / xw B) ↔ (w = {y A / xφ} w B)))
203, 19bitrd 244 . . . . 5 (A V → ([̣A / x]̣(w = {y φ} w B) ↔ (w = {y A / xφ} w B)))
2120exbidv 1626 . . . 4 (A V → (wA / x]̣(w = {y φ} w B) ↔ w(w = {y A / xφ} w B)))
222, 21bitrd 244 . . 3 (A V → ([̣A / xw(w = {y φ} w B) ↔ w(w = {y A / xφ} w B)))
23 df-clel 2349 . . . 4 ({y φ} Bw(w = {y φ} w B))
2423sbcbii 3102 . . 3 ([̣A / x]̣{y φ} B ↔ [̣A / xw(w = {y φ} w B))
25 df-clel 2349 . . 3 ({y A / xφ} Bw(w = {y A / xφ} w B))
2622, 24, 253bitr4g 279 . 2 (A V → ([̣A / x]̣{y φ} B ↔ {y A / xφ} B))
271, 26syl 15 1 (A V → ([̣A / x]̣{y φ} B ↔ {y A / xφ} B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wnfc 2477  Vcvv 2860  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  csbexg  3147
  Copyright terms: Public domain W3C validator