New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snsspw | GIF version |
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snsspw | ⊢ {A} ⊆ ℘A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3324 | . . 3 ⊢ (x = A → x ⊆ A) | |
2 | elsn 3749 | . . 3 ⊢ (x ∈ {A} ↔ x = A) | |
3 | df-pw 3725 | . . . 4 ⊢ ℘A = {x ∣ x ⊆ A} | |
4 | 3 | abeq2i 2461 | . . 3 ⊢ (x ∈ ℘A ↔ x ⊆ A) |
5 | 1, 2, 4 | 3imtr4i 257 | . 2 ⊢ (x ∈ {A} → x ∈ ℘A) |
6 | 5 | ssriv 3278 | 1 ⊢ {A} ⊆ ℘A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 ℘cpw 3723 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 df-sn 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |