New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > prsspw | GIF version |
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
prsspw.1 | ⊢ A ∈ V |
prsspw.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
prsspw | ⊢ ({A, B} ⊆ ℘C ↔ (A ⊆ C ∧ B ⊆ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prsspw.1 | . . 3 ⊢ A ∈ V | |
2 | prsspw.2 | . . 3 ⊢ B ∈ V | |
3 | 1, 2 | prss 3862 | . 2 ⊢ ((A ∈ ℘C ∧ B ∈ ℘C) ↔ {A, B} ⊆ ℘C) |
4 | 1 | elpw 3729 | . . 3 ⊢ (A ∈ ℘C ↔ A ⊆ C) |
5 | 2 | elpw 3729 | . . 3 ⊢ (B ∈ ℘C ↔ B ⊆ C) |
6 | 4, 5 | anbi12i 678 | . 2 ⊢ ((A ∈ ℘C ∧ B ∈ ℘C) ↔ (A ⊆ C ∧ B ⊆ C)) |
7 | 3, 6 | bitr3i 242 | 1 ⊢ ({A, B} ⊆ ℘C ↔ (A ⊆ C ∧ B ⊆ C)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 ℘cpw 3723 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 df-pw 3725 df-sn 3742 df-pr 3743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |