NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  prsspw GIF version

Theorem prsspw 3879
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
prsspw.1 A V
prsspw.2 B V
Assertion
Ref Expression
prsspw ({A, B} C ↔ (A C B C))

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . . 3 A V
2 prsspw.2 . . 3 B V
31, 2prss 3862 . 2 ((A C B C) ↔ {A, B} C)
41elpw 3729 . . 3 (A CA C)
52elpw 3729 . . 3 (B CB C)
64, 5anbi12i 678 . 2 ((A C B C) ↔ (A C B C))
73, 6bitr3i 242 1 ({A, B} C ↔ (A C B C))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   wcel 1710  Vcvv 2860   wss 3258  cpw 3723  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260  df-pw 3725  df-sn 3742  df-pr 3743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator