NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sseqtri GIF version

Theorem sseqtri 3304
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1 A B
sseqtr.2 B = C
Assertion
Ref Expression
sseqtri A C

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2 A B
2 sseqtr.2 . . 3 B = C
32sseq2i 3297 . 2 (A BA C)
41, 3mpbi 199 1 A C
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  sseqtr4i  3305  eqimssi  3326  abssi  3342  ssun2  3428  snprss2  4122  0ima  5015  foimacnv  5304  clos1base  5879  sbthlem1  6204
  Copyright terms: Public domain W3C validator