NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssintrab GIF version

Theorem ssintrab 3950
Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab (A {x B φ} ↔ x B (φA x))
Distinct variable group:   x,A
Allowed substitution hints:   φ(x)   B(x)

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 2624 . . . 4 {x B φ} = {x (x B φ)}
21inteqi 3931 . . 3 {x B φ} = {x (x B φ)}
32sseq2i 3297 . 2 (A {x B φ} ↔ A {x (x B φ)})
4 impexp 433 . . . 4 (((x B φ) → A x) ↔ (x B → (φA x)))
54albii 1566 . . 3 (x((x B φ) → A x) ↔ x(x B → (φA x)))
6 ssintab 3944 . . 3 (A {x (x B φ)} ↔ x((x B φ) → A x))
7 df-ral 2620 . . 3 (x B (φA x) ↔ x(x B → (φA x)))
85, 6, 73bitr4i 268 . 2 (A {x (x B φ)} ↔ x B (φA x))
93, 8bitri 240 1 (A {x B φ} ↔ x B (φA x))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540   wcel 1710  {cab 2339  wral 2615  {crab 2619   wss 3258  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-int 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator