NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iunss2 GIF version

Theorem iunss2 4012
Description: A subclass condition on the members of two indexed classes C(x) and D(y) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3923. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
iunss2 (x A y B C Dx A C y B D)
Distinct variable groups:   x,y   x,B   y,C   x,D
Allowed substitution hints:   A(x,y)   B(y)   C(x)   D(y)

Proof of Theorem iunss2
StepHypRef Expression
1 ssiun 4009 . . 3 (y B C DC y B D)
21ralimi 2690 . 2 (x A y B C Dx A C y B D)
3 iunss 4008 . 2 (x A C y B Dx A C y B D)
42, 3sylibr 203 1 (x A y B C Dx A C y B D)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 2615  wrex 2616   wss 3258  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-iun 3972
This theorem is referenced by:  iunxdif2  4015
  Copyright terms: Public domain W3C validator