New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iunss2 | GIF version |
Description: A subclass condition on the members of two indexed classes C(x) and D(y) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3923. (Contributed by NM, 9-Dec-2004.) |
Ref | Expression |
---|---|
iunss2 | ⊢ (∀x ∈ A ∃y ∈ B C ⊆ D → ∪x ∈ A C ⊆ ∪y ∈ B D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun 4009 | . . 3 ⊢ (∃y ∈ B C ⊆ D → C ⊆ ∪y ∈ B D) | |
2 | 1 | ralimi 2690 | . 2 ⊢ (∀x ∈ A ∃y ∈ B C ⊆ D → ∀x ∈ A C ⊆ ∪y ∈ B D) |
3 | iunss 4008 | . 2 ⊢ (∪x ∈ A C ⊆ ∪y ∈ B D ↔ ∀x ∈ A C ⊆ ∪y ∈ B D) | |
4 | 2, 3 | sylibr 203 | 1 ⊢ (∀x ∈ A ∃y ∈ B C ⊆ D → ∪x ∈ A C ⊆ ∪y ∈ B D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 2615 ∃wrex 2616 ⊆ wss 3258 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
This theorem is referenced by: iunxdif2 4015 |
Copyright terms: Public domain | W3C validator |