New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unimax | GIF version |
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unimax | ⊢ (A ∈ B → ∪{x ∈ B ∣ x ⊆ A} = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3291 | . . 3 ⊢ A ⊆ A | |
2 | sseq1 3293 | . . . 4 ⊢ (x = A → (x ⊆ A ↔ A ⊆ A)) | |
3 | 2 | elrab3 2996 | . . 3 ⊢ (A ∈ B → (A ∈ {x ∈ B ∣ x ⊆ A} ↔ A ⊆ A)) |
4 | 1, 3 | mpbiri 224 | . 2 ⊢ (A ∈ B → A ∈ {x ∈ B ∣ x ⊆ A}) |
5 | sseq1 3293 | . . . . 5 ⊢ (x = y → (x ⊆ A ↔ y ⊆ A)) | |
6 | 5 | elrab 2995 | . . . 4 ⊢ (y ∈ {x ∈ B ∣ x ⊆ A} ↔ (y ∈ B ∧ y ⊆ A)) |
7 | 6 | simprbi 450 | . . 3 ⊢ (y ∈ {x ∈ B ∣ x ⊆ A} → y ⊆ A) |
8 | 7 | rgen 2680 | . 2 ⊢ ∀y ∈ {x ∈ B ∣ x ⊆ A}y ⊆ A |
9 | ssunieq 3925 | . . 3 ⊢ ((A ∈ {x ∈ B ∣ x ⊆ A} ∧ ∀y ∈ {x ∈ B ∣ x ⊆ A}y ⊆ A) → A = ∪{x ∈ B ∣ x ⊆ A}) | |
10 | 9 | eqcomd 2358 | . 2 ⊢ ((A ∈ {x ∈ B ∣ x ⊆ A} ∧ ∀y ∈ {x ∈ B ∣ x ⊆ A}y ⊆ A) → ∪{x ∈ B ∣ x ⊆ A} = A) |
11 | 4, 8, 10 | sylancl 643 | 1 ⊢ (A ∈ B → ∪{x ∈ B ∣ x ⊆ A} = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2615 {crab 2619 ⊆ wss 3258 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-uni 3893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |