NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unimax GIF version

Theorem unimax 3926
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax (A B{x B x A} = A)
Distinct variable groups:   x,A   x,B

Proof of Theorem unimax
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 ssid 3291 . . 3 A A
2 sseq1 3293 . . . 4 (x = A → (x AA A))
32elrab3 2996 . . 3 (A B → (A {x B x A} ↔ A A))
41, 3mpbiri 224 . 2 (A BA {x B x A})
5 sseq1 3293 . . . . 5 (x = y → (x Ay A))
65elrab 2995 . . . 4 (y {x B x A} ↔ (y B y A))
76simprbi 450 . . 3 (y {x B x A} → y A)
87rgen 2680 . 2 y {x B x A}y A
9 ssunieq 3925 . . 3 ((A {x B x A} y {x B x A}y A) → A = {x B x A})
109eqcomd 2358 . 2 ((A {x B x A} y {x B x A}y A) → {x B x A} = A)
114, 8, 10sylancl 643 1 (A B{x B x A} = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  wral 2615  {crab 2619   wss 3258  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-uni 3893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator