New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > symdif2 | GIF version |
Description: Two ways to express symmetric difference. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
symdif2 | ⊢ ((A ∖ B) ∪ (B ∖ A)) = {x ∣ ¬ (x ∈ A ↔ x ∈ B)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3222 | . . . 4 ⊢ (x ∈ (A ∖ B) ↔ (x ∈ A ∧ ¬ x ∈ B)) | |
2 | eldif 3222 | . . . 4 ⊢ (x ∈ (B ∖ A) ↔ (x ∈ B ∧ ¬ x ∈ A)) | |
3 | 1, 2 | orbi12i 507 | . . 3 ⊢ ((x ∈ (A ∖ B) ∨ x ∈ (B ∖ A)) ↔ ((x ∈ A ∧ ¬ x ∈ B) ∨ (x ∈ B ∧ ¬ x ∈ A))) |
4 | elun 3221 | . . 3 ⊢ (x ∈ ((A ∖ B) ∪ (B ∖ A)) ↔ (x ∈ (A ∖ B) ∨ x ∈ (B ∖ A))) | |
5 | xor 861 | . . 3 ⊢ (¬ (x ∈ A ↔ x ∈ B) ↔ ((x ∈ A ∧ ¬ x ∈ B) ∨ (x ∈ B ∧ ¬ x ∈ A))) | |
6 | 3, 4, 5 | 3bitr4i 268 | . 2 ⊢ (x ∈ ((A ∖ B) ∪ (B ∖ A)) ↔ ¬ (x ∈ A ↔ x ∈ B)) |
7 | 6 | abbi2i 2465 | 1 ⊢ ((A ∖ B) ∪ (B ∖ A)) = {x ∣ ¬ (x ∈ A ↔ x ∈ B)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∖ cdif 3207 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |