New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfif4 | GIF version |
Description: Alternate definition of the conditional operator df-if 3664. Note that φ is independent of x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) |
Ref | Expression |
---|---|
dfif3.1 | ⊢ C = {x ∣ φ} |
Ref | Expression |
---|---|
dfif4 | ⊢ if(φ, A, B) = ((A ∪ B) ∩ ((A ∪ (V ∖ C)) ∩ (B ∪ C))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif3.1 | . . 3 ⊢ C = {x ∣ φ} | |
2 | 1 | dfif3 3673 | . 2 ⊢ if(φ, A, B) = ((A ∩ C) ∪ (B ∩ (V ∖ C))) |
3 | undir 3505 | . 2 ⊢ ((A ∩ C) ∪ (B ∩ (V ∖ C))) = ((A ∪ (B ∩ (V ∖ C))) ∩ (C ∪ (B ∩ (V ∖ C)))) | |
4 | undi 3503 | . . . 4 ⊢ (A ∪ (B ∩ (V ∖ C))) = ((A ∪ B) ∩ (A ∪ (V ∖ C))) | |
5 | undi 3503 | . . . . 5 ⊢ (C ∪ (B ∩ (V ∖ C))) = ((C ∪ B) ∩ (C ∪ (V ∖ C))) | |
6 | uncom 3409 | . . . . . 6 ⊢ (C ∪ B) = (B ∪ C) | |
7 | undifv 3625 | . . . . . 6 ⊢ (C ∪ (V ∖ C)) = V | |
8 | 6, 7 | ineq12i 3456 | . . . . 5 ⊢ ((C ∪ B) ∩ (C ∪ (V ∖ C))) = ((B ∪ C) ∩ V) |
9 | inv1 3578 | . . . . 5 ⊢ ((B ∪ C) ∩ V) = (B ∪ C) | |
10 | 5, 8, 9 | 3eqtri 2377 | . . . 4 ⊢ (C ∪ (B ∩ (V ∖ C))) = (B ∪ C) |
11 | 4, 10 | ineq12i 3456 | . . 3 ⊢ ((A ∪ (B ∩ (V ∖ C))) ∩ (C ∪ (B ∩ (V ∖ C)))) = (((A ∪ B) ∩ (A ∪ (V ∖ C))) ∩ (B ∪ C)) |
12 | inass 3466 | . . 3 ⊢ (((A ∪ B) ∩ (A ∪ (V ∖ C))) ∩ (B ∪ C)) = ((A ∪ B) ∩ ((A ∪ (V ∖ C)) ∩ (B ∪ C))) | |
13 | 11, 12 | eqtri 2373 | . 2 ⊢ ((A ∪ (B ∩ (V ∖ C))) ∩ (C ∪ (B ∩ (V ∖ C)))) = ((A ∪ B) ∩ ((A ∪ (V ∖ C)) ∩ (B ∪ C))) |
14 | 2, 3, 13 | 3eqtri 2377 | 1 ⊢ if(φ, A, B) = ((A ∪ B) ∩ ((A ∪ (V ∖ C)) ∩ (B ∪ C))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 {cab 2339 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-if 3664 |
This theorem is referenced by: dfif5 3675 |
Copyright terms: Public domain | W3C validator |