New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > undif1 | GIF version |
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 3623). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
undif1 | ⊢ ((A ∖ B) ∪ B) = (A ∪ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undir 3505 | . 2 ⊢ ((A ∩ (V ∖ B)) ∪ B) = ((A ∪ B) ∩ ((V ∖ B) ∪ B)) | |
2 | invdif 3497 | . . 3 ⊢ (A ∩ (V ∖ B)) = (A ∖ B) | |
3 | 2 | uneq1i 3415 | . 2 ⊢ ((A ∩ (V ∖ B)) ∪ B) = ((A ∖ B) ∪ B) |
4 | uncom 3409 | . . . . 5 ⊢ ((V ∖ B) ∪ B) = (B ∪ (V ∖ B)) | |
5 | undifv 3625 | . . . . 5 ⊢ (B ∪ (V ∖ B)) = V | |
6 | 4, 5 | eqtri 2373 | . . . 4 ⊢ ((V ∖ B) ∪ B) = V |
7 | 6 | ineq2i 3455 | . . 3 ⊢ ((A ∪ B) ∩ ((V ∖ B) ∪ B)) = ((A ∪ B) ∩ V) |
8 | inv1 3578 | . . 3 ⊢ ((A ∪ B) ∩ V) = (A ∪ B) | |
9 | 7, 8 | eqtri 2373 | . 2 ⊢ ((A ∪ B) ∩ ((V ∖ B) ∪ B)) = (A ∪ B) |
10 | 1, 3, 9 | 3eqtr3i 2381 | 1 ⊢ ((A ∖ B) ∪ B) = (A ∪ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: undif2 3627 nnsucelrlem4 4428 ssfin 4471 sfinltfin 4536 |
Copyright terms: Public domain | W3C validator |