NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  undif1 GIF version

Theorem undif1 3626
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 3623). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
undif1 ((A B) ∪ B) = (AB)

Proof of Theorem undif1
StepHypRef Expression
1 undir 3505 . 2 ((A ∩ (V B)) ∪ B) = ((AB) ∩ ((V B) ∪ B))
2 invdif 3497 . . 3 (A ∩ (V B)) = (A B)
32uneq1i 3415 . 2 ((A ∩ (V B)) ∪ B) = ((A B) ∪ B)
4 uncom 3409 . . . . 5 ((V B) ∪ B) = (B ∪ (V B))
5 undifv 3625 . . . . 5 (B ∪ (V B)) = V
64, 5eqtri 2373 . . . 4 ((V B) ∪ B) = V
76ineq2i 3455 . . 3 ((AB) ∩ ((V B) ∪ B)) = ((AB) ∩ V)
8 inv1 3578 . . 3 ((AB) ∩ V) = (AB)
97, 8eqtri 2373 . 2 ((AB) ∩ ((V B) ∪ B)) = (AB)
101, 3, 93eqtr3i 2381 1 ((A B) ∪ B) = (AB)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  Vcvv 2860   cdif 3207  cun 3208  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  undif2  3627  nnsucelrlem4  4428  ssfin  4471  sfinltfin  4536
  Copyright terms: Public domain W3C validator