New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpkeq12i GIF version

Theorem xpkeq12i 4203
 Description: Equality inference for Kuratowski cross product. (Contributed by SF, 12-Jan-2015.)
Hypotheses
Ref Expression
xpkeq12i.1 A = B
xpkeq12i.2 C = D
Assertion
Ref Expression
xpkeq12i (A ×k C) = (B ×k D)

Proof of Theorem xpkeq12i
StepHypRef Expression
1 xpkeq12i.1 . 2 A = B
2 xpkeq12i.2 . 2 C = D
3 xpkeq12 4200 . 2 ((A = B C = D) → (A ×k C) = (B ×k D))
41, 2, 3mp2an 653 1 (A ×k C) = (B ×k D)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ×k cxpk 4174 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-rex 2620  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-ss 3259  df-nul 3551  df-sn 3741  df-pr 3742  df-opk 4058  df-xpk 4185 This theorem is referenced by:  xpkexg  4288
 Copyright terms: Public domain W3C validator