Proof of Theorem u5lemaa
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →5 b) ∩ a) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) |
| 3 | | comanr1 464 |
. . . . 5
a C (a ∩ b) |
| 4 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ b) |
| 5 | 4 | comcom6 459 |
. . . . 5
a C (a⊥ ∩ b) |
| 6 | 3, 5 | com2or 483 |
. . . 4
a C ((a ∩ b) ∪
(a⊥ ∩ b)) |
| 7 | | comanr1 464 |
. . . . 5
a⊥ C
(a⊥ ∩ b⊥ ) |
| 8 | 7 | comcom6 459 |
. . . 4
a C (a⊥ ∩ b⊥ ) |
| 9 | 6, 8 | fh1r 473 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) = ((((a ∩
b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) |
| 10 | 3, 5 | fh1r 473 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) |
| 11 | | an32 83 |
. . . . . . . . 9
((a ∩ b) ∩ a) =
((a ∩ a) ∩ b) |
| 12 | | anidm 111 |
. . . . . . . . . 10
(a ∩ a) = a |
| 13 | 12 | ran 78 |
. . . . . . . . 9
((a ∩ a) ∩ b) =
(a ∩ b) |
| 14 | 11, 13 | ax-r2 36 |
. . . . . . . 8
((a ∩ b) ∩ a) =
(a ∩ b) |
| 15 | | an32 83 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ a) =
((a⊥ ∩ a) ∩ b) |
| 16 | | ancom 74 |
. . . . . . . . . 10
((a⊥ ∩ a) ∩ b) =
(b ∩ (a⊥ ∩ a)) |
| 17 | | ancom 74 |
. . . . . . . . . . . . . 14
(a ∩ a⊥ ) = (a⊥ ∩ a) |
| 18 | 17 | ax-r1 35 |
. . . . . . . . . . . . 13
(a⊥ ∩ a) = (a ∩
a⊥ ) |
| 19 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (a ∩ a⊥ ) |
| 20 | 19 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ a⊥ ) = 0 |
| 21 | 18, 20 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∩ a) = 0 |
| 22 | 21 | lan 77 |
. . . . . . . . . . 11
(b ∩ (a⊥ ∩ a)) = (b ∩
0) |
| 23 | | an0 108 |
. . . . . . . . . . 11
(b ∩ 0) = 0 |
| 24 | 22, 23 | ax-r2 36 |
. . . . . . . . . 10
(b ∩ (a⊥ ∩ a)) = 0 |
| 25 | 16, 24 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ a) ∩ b) =
0 |
| 26 | 15, 25 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ a) =
0 |
| 27 | 14, 26 | 2or 72 |
. . . . . . 7
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
((a ∩ b) ∪ 0) |
| 28 | | or0 102 |
. . . . . . 7
((a ∩ b) ∪ 0) = (a
∩ b) |
| 29 | 27, 28 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
(a ∩ b) |
| 30 | 10, 29 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(a ∩ b) |
| 31 | | ancom 74 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ a) = (a ∩
(a⊥ ∩ b⊥ )) |
| 32 | 30, 31 | 2or 72 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) = ((a ∩
b) ∪ (a ∩ (a⊥ ∩ b⊥ ))) |
| 33 | 3, 8 | fh4 472 |
. . . . 5
((a ∩ b) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
a) ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) |
| 34 | | ax-a2 31 |
. . . . . . . 8
((a ∩ b) ∪ a) =
(a ∪ (a ∩ b)) |
| 35 | | orabs 120 |
. . . . . . . 8
(a ∪ (a ∩ b)) =
a |
| 36 | 34, 35 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ a) =
a |
| 37 | 36 | ran 78 |
. . . . . 6
(((a ∩ b) ∪ a)
∩ ((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∩ ((a
∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 38 | 3, 8 | fh1 469 |
. . . . . . 7
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = ((a ∩ (a ∩
b)) ∪ (a ∩ (a⊥ ∩ b⊥ ))) |
| 39 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
| 40 | 39 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a ∩ b)) =
((a ∩ a) ∩ b) |
| 41 | 40, 13 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a ∩ b)) =
(a ∩ b) |
| 42 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
| 43 | 42 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ b⊥ ) |
| 44 | | ancom 74 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
| 45 | 19 | lan 77 |
. . . . . . . . . . . . 13
(b⊥ ∩ 0) =
(b⊥ ∩ (a ∩ a⊥ )) |
| 46 | 45 | ax-r1 35 |
. . . . . . . . . . . 12
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
| 47 | | an0 108 |
. . . . . . . . . . . 12
(b⊥ ∩ 0) =
0 |
| 48 | 46, 47 | ax-r2 36 |
. . . . . . . . . . 11
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
| 49 | 44, 48 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = 0 |
| 50 | 43, 49 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
| 51 | 41, 50 | 2or 72 |
. . . . . . . 8
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
0) |
| 52 | 51, 28 | ax-r2 36 |
. . . . . . 7
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
| 53 | 38, 52 | ax-r2 36 |
. . . . . 6
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = (a ∩ b) |
| 54 | 37, 53 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ a)
∩ ((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
| 55 | 33, 54 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
| 56 | 32, 55 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) = (a ∩
b) |
| 57 | 9, 56 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) = (a ∩
b) |
| 58 | 2, 57 | ax-r2 36 |
1
((a →5 b) ∩ a) =
(a ∩ b) |