Proof of Theorem u5lemaa
Step | Hyp | Ref
| Expression |
1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
2 | 1 | ran 78 |
. 2
((a →5 b) ∩ a) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) |
3 | | comanr1 464 |
. . . . 5
a C (a ∩ b) |
4 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ b) |
5 | 4 | comcom6 459 |
. . . . 5
a C (a⊥ ∩ b) |
6 | 3, 5 | com2or 483 |
. . . 4
a C ((a ∩ b) ∪
(a⊥ ∩ b)) |
7 | | comanr1 464 |
. . . . 5
a⊥ C
(a⊥ ∩ b⊥ ) |
8 | 7 | comcom6 459 |
. . . 4
a C (a⊥ ∩ b⊥ ) |
9 | 6, 8 | fh1r 473 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) = ((((a ∩
b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) |
10 | 3, 5 | fh1r 473 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) |
11 | | an32 83 |
. . . . . . . . 9
((a ∩ b) ∩ a) =
((a ∩ a) ∩ b) |
12 | | anidm 111 |
. . . . . . . . . 10
(a ∩ a) = a |
13 | 12 | ran 78 |
. . . . . . . . 9
((a ∩ a) ∩ b) =
(a ∩ b) |
14 | 11, 13 | ax-r2 36 |
. . . . . . . 8
((a ∩ b) ∩ a) =
(a ∩ b) |
15 | | an32 83 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ a) =
((a⊥ ∩ a) ∩ b) |
16 | | ancom 74 |
. . . . . . . . . 10
((a⊥ ∩ a) ∩ b) =
(b ∩ (a⊥ ∩ a)) |
17 | | ancom 74 |
. . . . . . . . . . . . . 14
(a ∩ a⊥ ) = (a⊥ ∩ a) |
18 | 17 | ax-r1 35 |
. . . . . . . . . . . . 13
(a⊥ ∩ a) = (a ∩
a⊥ ) |
19 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (a ∩ a⊥ ) |
20 | 19 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ a⊥ ) = 0 |
21 | 18, 20 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∩ a) = 0 |
22 | 21 | lan 77 |
. . . . . . . . . . 11
(b ∩ (a⊥ ∩ a)) = (b ∩
0) |
23 | | an0 108 |
. . . . . . . . . . 11
(b ∩ 0) = 0 |
24 | 22, 23 | ax-r2 36 |
. . . . . . . . . 10
(b ∩ (a⊥ ∩ a)) = 0 |
25 | 16, 24 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ a) ∩ b) =
0 |
26 | 15, 25 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ a) =
0 |
27 | 14, 26 | 2or 72 |
. . . . . . 7
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
((a ∩ b) ∪ 0) |
28 | | or0 102 |
. . . . . . 7
((a ∩ b) ∪ 0) = (a
∩ b) |
29 | 27, 28 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
(a ∩ b) |
30 | 10, 29 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(a ∩ b) |
31 | | ancom 74 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ a) = (a ∩
(a⊥ ∩ b⊥ )) |
32 | 30, 31 | 2or 72 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) = ((a ∩
b) ∪ (a ∩ (a⊥ ∩ b⊥ ))) |
33 | 3, 8 | fh4 472 |
. . . . 5
((a ∩ b) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = (((a ∩ b) ∪
a) ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) |
34 | | ax-a2 31 |
. . . . . . . 8
((a ∩ b) ∪ a) =
(a ∪ (a ∩ b)) |
35 | | orabs 120 |
. . . . . . . 8
(a ∪ (a ∩ b)) =
a |
36 | 34, 35 | ax-r2 36 |
. . . . . . 7
((a ∩ b) ∪ a) =
a |
37 | 36 | ran 78 |
. . . . . 6
(((a ∩ b) ∪ a)
∩ ((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∩ ((a
∩ b) ∪ (a⊥ ∩ b⊥ ))) |
38 | 3, 8 | fh1 469 |
. . . . . . 7
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = ((a ∩ (a ∩
b)) ∪ (a ∩ (a⊥ ∩ b⊥ ))) |
39 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
40 | 39 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a ∩ b)) =
((a ∩ a) ∩ b) |
41 | 40, 13 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a ∩ b)) =
(a ∩ b) |
42 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
43 | 42 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ b⊥ ) |
44 | | ancom 74 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
45 | 19 | lan 77 |
. . . . . . . . . . . . 13
(b⊥ ∩ 0) =
(b⊥ ∩ (a ∩ a⊥ )) |
46 | 45 | ax-r1 35 |
. . . . . . . . . . . 12
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
47 | | an0 108 |
. . . . . . . . . . . 12
(b⊥ ∩ 0) =
0 |
48 | 46, 47 | ax-r2 36 |
. . . . . . . . . . 11
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
49 | 44, 48 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = 0 |
50 | 43, 49 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
51 | 41, 50 | 2or 72 |
. . . . . . . 8
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
0) |
52 | 51, 28 | ax-r2 36 |
. . . . . . 7
((a ∩ (a ∩ b))
∪ (a ∩ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
53 | 38, 52 | ax-r2 36 |
. . . . . 6
(a ∩ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = (a ∩ b) |
54 | 37, 53 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ a)
∩ ((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
55 | 33, 54 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (a
∩ (a⊥ ∩ b⊥ ))) = (a ∩ b) |
56 | 32, 55 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) = (a ∩
b) |
57 | 9, 56 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) = (a ∩
b) |
58 | 2, 57 | ax-r2 36 |
1
((a →5 b) ∩ a) =
(a ∩ b) |