Proof of Theorem u4lemaa
| Step | Hyp | Ref
| Expression |
| 1 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →4 b) ∩ a) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ a) |
| 3 | | comanr1 464 |
. . . . . 6
a C (a ∩ b) |
| 4 | | comanr1 464 |
. . . . . . 7
a⊥ C
(a⊥ ∩ b) |
| 5 | 4 | comcom6 459 |
. . . . . 6
a C (a⊥ ∩ b) |
| 6 | 3, 5 | com2or 483 |
. . . . 5
a C ((a ∩ b) ∪
(a⊥ ∩ b)) |
| 7 | 6 | comcom 453 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) C a |
| 8 | 3 | comcom3 454 |
. . . . . . . 8
a⊥ C
(a ∩ b) |
| 9 | 8, 4 | com2or 483 |
. . . . . . 7
a⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
| 10 | 9 | comcom 453 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C a⊥ |
| 11 | | comanr2 465 |
. . . . . . . 8
b C (a ∩ b) |
| 12 | | comanr2 465 |
. . . . . . . 8
b C (a⊥ ∩ b) |
| 13 | 11, 12 | com2or 483 |
. . . . . . 7
b C ((a ∩ b) ∪
(a⊥ ∩ b)) |
| 14 | 13 | comcom 453 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) C b |
| 15 | 10, 14 | com2or 483 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C (a⊥ ∪ b) |
| 16 | 14 | comcom2 183 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b)) C b⊥ |
| 17 | 15, 16 | com2an 484 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) C ((a⊥ ∪ b) ∩ b⊥ ) |
| 18 | 7, 17 | fh2r 474 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ a) = ((((a ∩
b) ∪ (a⊥ ∩ b)) ∩ a)
∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ a)) |
| 19 | 3, 5 | fh1r 473 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) |
| 20 | | an32 83 |
. . . . . . . . 9
((a ∩ b) ∩ a) =
((a ∩ a) ∩ b) |
| 21 | | anidm 111 |
. . . . . . . . . 10
(a ∩ a) = a |
| 22 | 21 | ran 78 |
. . . . . . . . 9
((a ∩ a) ∩ b) =
(a ∩ b) |
| 23 | 20, 22 | ax-r2 36 |
. . . . . . . 8
((a ∩ b) ∩ a) =
(a ∩ b) |
| 24 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ a) =
(a ∩ (a⊥ ∩ b)) |
| 25 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b) = (a ∩
(a⊥ ∩ b)) |
| 26 | 25 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ b)) = ((a ∩
a⊥ ) ∩ b) |
| 27 | | ancom 74 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b) = (b ∩
(a ∩ a⊥ )) |
| 28 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (a ∩ a⊥ ) |
| 29 | 28 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ a⊥ ) = 0 |
| 30 | 29 | lan 77 |
. . . . . . . . . . . 12
(b ∩ (a ∩ a⊥ )) = (b ∩ 0) |
| 31 | | an0 108 |
. . . . . . . . . . . 12
(b ∩ 0) = 0 |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . . . . . 11
(b ∩ (a ∩ a⊥ )) = 0 |
| 33 | 27, 32 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b) = 0 |
| 34 | 26, 33 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b)) = 0 |
| 35 | 24, 34 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ a) =
0 |
| 36 | 23, 35 | 2or 72 |
. . . . . . 7
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
((a ∩ b) ∪ 0) |
| 37 | | or0 102 |
. . . . . . 7
((a ∩ b) ∪ 0) = (a
∩ b) |
| 38 | 36, 37 | ax-r2 36 |
. . . . . 6
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
(a ∩ b) |
| 39 | 19, 38 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(a ∩ b) |
| 40 | | anass 76 |
. . . . . 6
(((a⊥ ∪
b) ∩ b⊥ ) ∩ a) = ((a⊥ ∪ b) ∩ (b⊥ ∩ a)) |
| 41 | | ancom 74 |
. . . . . . . . 9
(b⊥ ∩ a) = (a ∩
b⊥ ) |
| 42 | | anor1 88 |
. . . . . . . . 9
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
| 43 | 41, 42 | ax-r2 36 |
. . . . . . . 8
(b⊥ ∩ a) = (a⊥ ∪ b)⊥ |
| 44 | 43 | lan 77 |
. . . . . . 7
((a⊥ ∪ b) ∩ (b⊥ ∩ a)) = ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) |
| 45 | | dff 101 |
. . . . . . . 8
0 = ((a⊥ ∪
b) ∩ (a⊥ ∪ b)⊥ ) |
| 46 | 45 | ax-r1 35 |
. . . . . . 7
((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) = 0 |
| 47 | 44, 46 | ax-r2 36 |
. . . . . 6
((a⊥ ∪ b) ∩ (b⊥ ∩ a)) = 0 |
| 48 | 40, 47 | ax-r2 36 |
. . . . 5
(((a⊥ ∪
b) ∩ b⊥ ) ∩ a) = 0 |
| 49 | 39, 48 | 2or 72 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ a)) = ((a ∩
b) ∪ 0) |
| 50 | 49, 37 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ (((a⊥ ∪ b) ∩ b⊥ ) ∩ a)) = (a ∩
b) |
| 51 | 18, 50 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) ∩ a) = (a ∩
b) |
| 52 | 2, 51 | ax-r2 36 |
1
((a →4 b) ∩ a) =
(a ∩ b) |