ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem Unicode version

Theorem climcvg1nlem 11118
Description: Lemma for climcvg1n 11119. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f  |-  ( ph  ->  F : NN --> CC )
climcvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climcvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
climcvg1nlem.g  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
climcvg1nlem.h  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
climcvg1nlem.j  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
Assertion
Ref Expression
climcvg1nlem  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, x    k, G, n    k, H, n, x    k, J    ph, k, n, x
Allowed substitution hints:    C( x)    F( n)    G( x)    J( x, n)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 9361 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9081 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 climcvg1n.f . . . . . . . 8  |-  ( ph  ->  F : NN --> CC )
43ffvelrnda 5555 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  CC )
54recld 10710 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( Re
`  ( F `  x ) )  e.  RR )
6 climcvg1nlem.g . . . . . 6  |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `
 x ) ) )
75, 6fmptd 5574 . . . . 5  |-  ( ph  ->  G : NN --> RR )
8 climcvg1n.c . . . . 5  |-  ( ph  ->  C  e.  RR+ )
9 climcvg1n.cau . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
10 eluznn 9394 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
1110adantll 467 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
123ad2antrr 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> CC )
1312, 11ffvelrnd 5556 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  CC )
1413recld 10710 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  k
) )  e.  RR )
15 fveq2 5421 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
1615fveq2d 5425 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  k )
) )
1716, 6fvmptg 5497 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  ( Re `  ( F `
 k ) )  e.  RR )  -> 
( G `  k
)  =  ( Re
`  ( F `  k ) ) )
1811, 14, 17syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  =  ( Re `  ( F `
 k ) ) )
19 simplr 519 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2012, 19ffvelrnd 5556 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  CC )
2120recld 10710 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( F `  n
) )  e.  RR )
22 fveq2 5421 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
2322fveq2d 5425 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
Re `  ( F `  x ) )  =  ( Re `  ( F `  n )
) )
2423, 6fvmptg 5497 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( Re `  ( F `
 n ) )  e.  RR )  -> 
( G `  n
)  =  ( Re
`  ( F `  n ) ) )
2519, 21, 24syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  =  ( Re `  ( F `
 n ) ) )
2618, 25oveq12d 5792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  n ) ) ) )
2713, 20resubd 10733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Re `  ( F `  k )
)  -  ( Re
`  ( F `  n ) ) ) )
2826, 27eqtr4d 2175 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  =  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )
2928fveq2d 5425 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  =  ( abs `  ( Re
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
3013, 20subcld 8073 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  k )  -  ( F `  n ) )  e.  CC )
31 absrele 10855 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
3230, 31syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Re `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3329, 32eqbrtrd 3950 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
3430recld 10710 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
3534recnd 7794 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Re `  ( ( F `  k )  -  ( F `  n )
) )  e.  CC )
3628, 35eqeltrd 2216 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  -  ( G `  n ) )  e.  CC )
3736abscld 10953 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( G `  k )  -  ( G `  n )
) )  e.  RR )
3830abscld 10953 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  e.  RR )
398ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
4019nnrpd 9482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
4139, 40rpdivcld 9501 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
4241rpred 9483 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
43 lelttr 7852 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4437, 38, 42, 43syl3anc 1216 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4533, 44mpand 425 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( G `  k
)  -  ( G `
 n ) ) )  <  ( C  /  n ) ) )
4645ralimdva 2499 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( G `  k )  -  ( G `  n ) ) )  <  ( C  /  n ) ) )
4746ralimdva 2499 . . . . . 6  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) ) )
489, 47mpd 13 . . . . 5  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( G `  k )  -  ( G `  n )
) )  <  ( C  /  n ) )
497, 8, 48climrecvg1n 11117 . . . 4  |-  ( ph  ->  G  e.  dom  ~~>  )
50 climdm 11064 . . . 4  |-  ( G  e.  dom  ~~>  <->  G  ~~>  (  ~~>  `  G
) )
5149, 50sylib 121 . . 3  |-  ( ph  ->  G  ~~>  (  ~~>  `  G
) )
52 nnex 8726 . . . 4  |-  NN  e.  _V
53 fex 5647 . . . 4  |-  ( ( F : NN --> CC  /\  NN  e.  _V )  ->  F  e.  _V )
543, 52, 53sylancl 409 . . 3  |-  ( ph  ->  F  e.  _V )
554imcld 10711 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( Im
`  ( F `  x ) )  e.  RR )
56 climcvg1nlem.h . . . . . . 7  |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
 x ) ) )
5755, 56fmptd 5574 . . . . . 6  |-  ( ph  ->  H : NN --> RR )
5813imcld 10711 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  k
) )  e.  RR )
5915fveq2d 5425 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  k )
) )
6059, 56fvmptg 5497 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  ( Im `  ( F `
 k ) )  e.  RR )  -> 
( H `  k
)  =  ( Im
`  ( F `  k ) ) )
6111, 58, 60syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  =  ( Im `  ( F `
 k ) ) )
6220imcld 10711 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( F `  n
) )  e.  RR )
6322fveq2d 5425 . . . . . . . . . . . . . . . 16  |-  ( x  =  n  ->  (
Im `  ( F `  x ) )  =  ( Im `  ( F `  n )
) )
6463, 56fvmptg 5497 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( Im `  ( F `
 n ) )  e.  RR )  -> 
( H `  n
)  =  ( Im
`  ( F `  n ) ) )
6519, 62, 64syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  =  ( Im `  ( F `
 n ) ) )
6661, 65oveq12d 5792 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  n ) ) ) )
6713, 20imsubd 10734 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( Im `  ( ( F `  k )  -  ( F `  n )
) )  =  ( ( Im `  ( F `  k )
)  -  ( Im
`  ( F `  n ) ) ) )
6866, 67eqtr4d 2175 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  =  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )
6968fveq2d 5425 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  =  ( abs `  ( Im
`  ( ( F `
 k )  -  ( F `  n ) ) ) ) )
70 absimle 10856 . . . . . . . . . . . 12  |-  ( ( ( F `  k
)  -  ( F `
 n ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  n )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 n ) ) ) )
7130, 70syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( Im `  (
( F `  k
)  -  ( F `
 n ) ) ) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7269, 71eqbrtrd 3950 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <_  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) ) )
7361, 58eqeltrd 2216 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  k )  e.  RR )
7465, 62eqeltrd 2216 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( H `  n )  e.  RR )
7573, 74resubcld 8143 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  RR )
7675recnd 7794 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( H `  k )  -  ( H `  n ) )  e.  CC )
7776abscld 10953 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( H `  k )  -  ( H `  n )
) )  e.  RR )
78 lelttr 7852 . . . . . . . . . . 11  |-  ( ( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  e.  RR  /\  ( C  /  n )  e.  RR )  ->  (
( ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
7977, 38, 42, 78syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n ) )  ->  ( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8072, 79mpand 425 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  -> 
( abs `  (
( H `  k
)  -  ( H `
 n ) ) )  <  ( C  /  n ) ) )
8180ralimdva 2499 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n )  ->  A. k  e.  ( ZZ>=
`  n ) ( abs `  ( ( H `  k )  -  ( H `  n ) ) )  <  ( C  /  n ) ) )
8281ralimdva 2499 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n )  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) ) )
839, 82mpd 13 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( H `  k )  -  ( H `  n )
) )  <  ( C  /  n ) )
8457, 8, 83climrecvg1n 11117 . . . . 5  |-  ( ph  ->  H  e.  dom  ~~>  )
85 climdm 11064 . . . . 5  |-  ( H  e.  dom  ~~>  <->  H  ~~>  (  ~~>  `  H
) )
8684, 85sylib 121 . . . 4  |-  ( ph  ->  H  ~~>  (  ~~>  `  H
) )
87 ax-icn 7715 . . . . 5  |-  _i  e.  CC
8887a1i 9 . . . 4  |-  ( ph  ->  _i  e.  CC )
89 climcvg1nlem.j . . . . . 6  |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) )
9052mptex 5646 . . . . . 6  |-  ( x  e.  NN  |->  ( _i  x.  ( H `  x ) ) )  e.  _V
9189, 90eqeltri 2212 . . . . 5  |-  J  e. 
_V
9291a1i 9 . . . 4  |-  ( ph  ->  J  e.  _V )
93 ax-resscn 7712 . . . . . . 7  |-  RR  C_  CC
9493a1i 9 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
9557, 94fssd 5285 . . . . 5  |-  ( ph  ->  H : NN --> CC )
9695ffvelrnda 5555 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  e.  CC )
9789a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `  x )
) ) )
98 fveq2 5421 . . . . . . 7  |-  ( x  =  k  ->  ( H `  x )  =  ( H `  k ) )
9998oveq2d 5790 . . . . . 6  |-  ( x  =  k  ->  (
_i  x.  ( H `  x ) )  =  ( _i  x.  ( H `  k )
) )
10099adantl 275 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  x  =  k )  -> 
( _i  x.  ( H `  x )
)  =  ( _i  x.  ( H `  k ) ) )
101 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
10287a1i 9 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  _i  e.  CC )
103102, 96mulcld 7786 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  e.  CC )
10497, 100, 101, 103fvmptd 5502 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  ( H `  k )
) )
1051, 2, 86, 88, 92, 96, 104climmulc2 11100 . . 3  |-  ( ph  ->  J  ~~>  ( _i  x.  ( 
~~>  `  H ) ) )
1067ffvelrnda 5555 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
107106recnd 7794 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  CC )
108104, 103eqeltrd 2216 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  e.  CC )
1093ffvelrnda 5555 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
110109replimd 10713 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
111109recld 10710 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( Re
`  ( F `  k ) )  e.  RR )
112101, 111, 17syl2anc 408 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( Re `  ( F `  k )
) )
113109imcld 10711 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( Im
`  ( F `  k ) )  e.  RR )
114101, 113, 60syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( Im `  ( F `  k )
) )
115114oveq2d 5790 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( _i  x.  ( H `  k ) )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
116104, 115eqtrd 2172 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( J `
 k )  =  ( _i  x.  (
Im `  ( F `  k ) ) ) )
117112, 116oveq12d 5792 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G `  k )  +  ( J `  k ) )  =  ( ( Re `  ( F `  k ) )  +  ( _i  x.  ( Im `  ( F `  k ) ) ) ) )
118110, 117eqtr4d 2175 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( G `  k )  +  ( J `  k ) ) )
1191, 2, 51, 54, 105, 107, 108, 118climadd 11095 . 2  |-  ( ph  ->  F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) ) )
120 climrel 11049 . . 3  |-  Rel  ~~>
121120releldmi 4778 . 2  |-  ( F  ~~>  ( (  ~~>  `  G
)  +  ( _i  x.  (  ~~>  `  H
) ) )  ->  F  e.  dom  ~~>  )
122119, 121syl 14 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   dom cdm 4539   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   1c1 7621   _ici 7622    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801    - cmin 7933    / cdiv 8432   NNcn 8720   ZZ>=cuz 9326   RR+crp 9441   Recre 10612   Imcim 10613   abscabs 10769    ~~> cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  climcvg1n  11119
  Copyright terms: Public domain W3C validator