ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprl Unicode version

Theorem nqprl 7359
Description: Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by 
<P. (Contributed by Jim Kingdon, 8-Jul-2020.)
Assertion
Ref Expression
nqprl  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B ) )
Distinct variable group:    A, l, u
Allowed substitution hints:    B( u, l)

Proof of Theorem nqprl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prop 7283 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prnmaxl 7296 . . . . . 6  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  E. x  e.  ( 1st `  B ) A 
<Q  x )
31, 2sylan 281 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  E. x  e.  ( 1st `  B ) A 
<Q  x )
4 elprnql 7289 . . . . . . . . . 10  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  ->  x  e.  Q. )
51, 4sylan 281 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  x  e.  ( 1st `  B ) )  ->  x  e.  Q. )
65ad2ant2r 500 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  Q. )
7 vex 2689 . . . . . . . . . . . 12  |-  x  e. 
_V
8 breq2 3933 . . . . . . . . . . . 12  |-  ( u  =  x  ->  ( A  <Q  u  <->  A  <Q  x ) )
97, 8elab 2828 . . . . . . . . . . 11  |-  ( x  e.  { u  |  A  <Q  u }  <->  A 
<Q  x )
109biimpri 132 . . . . . . . . . 10  |-  ( A 
<Q  x  ->  x  e. 
{ u  |  A  <Q  u } )
11 ltnqex 7357 . . . . . . . . . . . 12  |-  { l  |  l  <Q  A }  e.  _V
12 gtnqex 7358 . . . . . . . . . . . 12  |-  { u  |  A  <Q  u }  e.  _V
1311, 12op2nd 6045 . . . . . . . . . . 11  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
1413eleq2i 2206 . . . . . . . . . 10  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  x  e.  { u  |  A  <Q  u }
)
1510, 14sylibr 133 . . . . . . . . 9  |-  ( A 
<Q  x  ->  x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) )
1615ad2antll 482 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
17 simprl 520 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  x  e.  ( 1st `  B ) )
18 19.8a 1569 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )  ->  E. x
( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) ) )
196, 16, 17, 18syl12anc 1214 . . . . . . 7  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  E. x ( x  e.  Q.  /\  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) ) )
20 df-rex 2422 . . . . . . 7  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) )  <->  E. x ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2119, 20sylibr 133 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )
22 elprnql 7289 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  A  e.  Q. )
231, 22sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  A  e.  Q. )
24 simpl 108 . . . . . . . 8  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  B  e.  P. )
25 nqprlu 7355 . . . . . . . . 9  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
26 ltdfpr 7314 . . . . . . . . 9  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2725, 26sylan 281 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2823, 24, 27syl2anc 408 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  -> 
( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
2928adantr 274 . . . . . 6  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )
3021, 29mpbird 166 . . . . 5  |-  ( ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  /\  ( x  e.  ( 1st `  B )  /\  A  <Q  x ) )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )
313, 30rexlimddv 2554 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  ( 1st `  B ) )  ->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B )
3231ex 114 . . 3  |-  ( B  e.  P.  ->  ( A  e.  ( 1st `  B )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
3332adantl 275 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B ) )
3427biimpa 294 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )
3514, 9bitri 183 . . . . . . . 8  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  x )
3635biimpi 119 . . . . . . 7  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  <Q  x )
3736ad2antrl 481 . . . . . 6  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B ) ) )  ->  A  <Q  x )
3837adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  A  <Q  x
)
39 simpllr 523 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  B  e.  P. )
40 simprrr 529 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  x  e.  ( 1st `  B ) )
41 prcdnql 7292 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
421, 41sylan 281 . . . . . 6  |-  ( ( B  e.  P.  /\  x  e.  ( 1st `  B ) )  -> 
( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
4339, 40, 42syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  ( A  <Q  x  ->  A  e.  ( 1st `  B ) ) )
4438, 43mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  /\  ( x  e. 
Q.  /\  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  B
) ) ) )  ->  A  e.  ( 1st `  B ) )
4534, 44rexlimddv 2554 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  P. )  /\  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B )  ->  A  e.  ( 1st `  B ) )
4645ex 114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  B  ->  A  e.  ( 1st `  B ) ) )
4733, 46impbid 128 1  |-  ( ( A  e.  Q.  /\  B  e.  P. )  ->  ( A  e.  ( 1st `  B )  <->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1468    e. wcel 1480   {cab 2125   E.wrex 2417   <.cop 3530   class class class wbr 3929   ` cfv 5123   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088    <Q cltq 7093   P.cnp 7099    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-inp 7274  df-iltp 7278
This theorem is referenced by:  caucvgprlemcanl  7452  cauappcvgprlem1  7467  archrecpr  7472  caucvgprlem1  7487  caucvgprprlemml  7502  caucvgprprlemopl  7505
  Copyright terms: Public domain W3C validator