Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  subctctexmid Unicode version

Theorem subctctexmid 13196
Description: If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
Hypotheses
Ref Expression
subctctexmid.x  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
subctctexmid.mk  |-  ( ph  ->  om  e. Markov )
Assertion
Ref Expression
subctctexmid  |-  ( ph  -> EXMID )
Distinct variable groups:    f, s, x    ph, g    x, g
Allowed substitution hints:    ph( x, f, s)

Proof of Theorem subctctexmid
Dummy variables  y  z  h  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subctctexmid.x . . . . 5  |-  ( ph  ->  A. x ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )
2 omex 4507 . . . . . . . 8  |-  om  e.  _V
32rabex 4072 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  e.  _V
43a1i 9 . . . . . 6  |-  ( ph  ->  { z  e.  om  |  y  =  { (/)
} }  e.  _V )
5 ssrab2 3182 . . . . . . 7  |-  { z  e.  om  |  y  =  { (/) } }  C_ 
om
6 f1oi 5405 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }
7 f1ofo 5374 . . . . . . . . 9  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -1-1-onto-> { z  e.  om  |  y  =  { (/)
} }  ->  (  _I  |`  { z  e. 
om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } )
86, 7ax-mp 5 . . . . . . . 8  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } ) : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
9 resiexg 4864 . . . . . . . . . 10  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } )  e.  _V )
103, 9ax-mp 5 . . . . . . . . 9  |-  (  _I  |`  { z  e.  om  |  y  =  { (/)
} } )  e. 
_V
11 foeq1 5341 . . . . . . . . 9  |-  ( f  =  (  _I  |`  { z  e.  om  |  y  =  { (/) } }
)  ->  ( f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }  <->  (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } } ) )
1210, 11spcev 2780 . . . . . . . 8  |-  ( (  _I  |`  { z  e.  om  |  y  =  { (/) } } ) : { z  e. 
om  |  y  =  { (/) } } -onto-> {
z  e.  om  | 
y  =  { (/) } }  ->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
138, 12ax-mp 5 . . . . . . 7  |-  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} }
145, 13pm3.2i 270 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } )
15 sseq1 3120 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( s  C_  om  <->  { z  e.  om  |  y  =  { (/) } }  C_  om ) )
16 foeq2 5342 . . . . . . . . 9  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> { z  e.  om  | 
y  =  { (/) } }  <->  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1716exbidv 1797 . . . . . . . 8  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} }  <->  E. f 
f : { z  e.  om  |  y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
1815, 17anbi12d 464 . . . . . . 7  |-  ( s  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  <->  ( {
z  e.  om  | 
y  =  { (/) } }  C_  om  /\  E. f  f : {
z  e.  om  | 
y  =  { (/) } } -onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
1918spcegv 2774 . . . . . 6  |-  ( { z  e.  om  | 
y  =  { (/) } }  e.  _V  ->  ( ( { z  e. 
om  |  y  =  { (/) } }  C_  om 
/\  E. f  f : { z  e.  om  |  y  =  { (/)
} } -onto-> { z  e.  om  |  y  =  { (/) } }
)  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } ) ) )
204, 14, 19mpisyl 1422 . . . . 5  |-  ( ph  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
21 foeq3 5343 . . . . . . . . . 10  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( f : s -onto-> x  <-> 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) )
2221exbidv 1797 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. f  f : s -onto-> x  <->  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } ) )
2322anbi2d 459 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( s  C_  om  /\  E. f  f : s
-onto-> x )  <->  ( s  C_ 
om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
2423exbidv 1797 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. s ( s 
C_  om  /\  E. f 
f : s -onto-> x )  <->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> { z  e.  om  | 
y  =  { (/) } } ) ) )
25 djueq1 6925 . . . . . . . . 9  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
26 foeq3 5343 . . . . . . . . 9  |-  ( ( x 1o )  =  ( { z  e.  om  |  y  =  { (/)
} } 1o )  -> 
( g : om -onto->
( x 1o )  <->  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( g : om -onto-> (
x 1o )  <->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2827exbidv 1797 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( E. g  g : om -onto-> ( x 1o ) 
<->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
2924, 28imbi12d 233 . . . . . 6  |-  ( x  =  { z  e. 
om  |  y  =  { (/) } }  ->  ( ( E. s ( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  <->  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) ) )
303, 29spcv 2779 . . . . 5  |-  ( A. x ( E. s
( s  C_  om  /\  E. f  f : s
-onto-> x )  ->  E. g 
g : om -onto-> (
x 1o ) )  -> 
( E. s ( s  C_  om  /\  E. f  f : s
-onto-> { z  e.  om  |  y  =  { (/)
} } )  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) ) )
311, 20, 30sylc 62 . . . 4  |-  ( ph  ->  E. g  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
32 fveq1 5420 . . . . . . . . . . . 12  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
h `  n )  =  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n ) )
3332eqeq1d 2148 . . . . . . . . . . 11  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( h `  n
)  =  1o  <->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3433rexbidv 2438 . . . . . . . . . 10  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( E. n  e.  om  ( h `  n
)  =  1o  <->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3534notbid 656 . . . . . . . . 9  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  E. n  e.  om  ( h `  n
)  =  1o  <->  -.  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
3635notbid 656 . . . . . . . 8  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  ( -.  -.  E. n  e. 
om  ( h `  n )  =  1o  <->  -. 
-.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
3736, 34imbi12d 233 . . . . . . 7  |-  ( h  =  ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) )  ->  (
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o )  <->  ( -.  -.  E. n  e.  om  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) ) )
38 subctctexmid.mk . . . . . . . . 9  |-  ( ph  ->  om  e. Markov )
39 ismkvnex 7029 . . . . . . . . . 10  |-  ( om  e. Markov  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m 
om ) ( -. 
-.  E. n  e.  om  ( h `  n
)  =  1o  ->  E. n  e.  om  (
h `  n )  =  1o ) ) )
4038, 39syl 14 . . . . . . . . 9  |-  ( ph  ->  ( om  e. Markov  <->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) ) )
4138, 40mpbid 146 . . . . . . . 8  |-  ( ph  ->  A. h  e.  ( 2o  ^m  om )
( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
4241adantr 274 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  A. h  e.  ( 2o  ^m  om ) ( -.  -.  E. n  e.  om  (
h `  n )  =  1o  ->  E. n  e.  om  ( h `  n )  =  1o ) )
43 1lt2o 6339 . . . . . . . . . . . 12  |-  1o  e.  2o
4443a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  ( 1st `  (
g `  n )
)  =  (/) )  ->  1o  e.  2o )
45 0lt2o 6338 . . . . . . . . . . . 12  |-  (/)  e.  2o
4645a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  -.  ( 1st `  (
g `  n )
)  =  (/) )  ->  (/) 
e.  2o )
47 simplr 519 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
48 fof 5345 . . . . . . . . . . . . . . 15  |-  ( g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
4947, 48syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  g : om --> ( { z  e.  om  |  y  =  { (/) } } 1o ) )
50 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  n  e.  om )
5149, 50ffvelrnd 5556 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
52 eldju1st 6956 . . . . . . . . . . . . 13  |-  ( ( g `  n )  e.  ( { z  e.  om  |  y  =  { (/) } } 1o )  ->  ( ( 1st `  ( g `  n ) )  =  (/)  \/  ( 1st `  (
g `  n )
)  =  1o ) )
5351, 52syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o ) )
54 1n0 6329 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
5554neii 2310 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
56 eqeq1 2146 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  (
( 1st `  (
g `  n )
)  =  (/)  <->  1o  =  (/) ) )
5755, 56mtbiri 664 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( g `
 n ) )  =  1o  ->  -.  ( 1st `  ( g `
 n ) )  =  (/) )
5857orim2i 750 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  ->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
59 df-dc 820 . . . . . . . . . . . . 13  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  <->  (
( 1st `  (
g `  n )
)  =  (/)  \/  -.  ( 1st `  ( g `
 n ) )  =  (/) ) )
6058, 59sylibr 133 . . . . . . . . . . . 12  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  \/  ( 1st `  ( g `  n ) )  =  1o )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6153, 60syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  -> DECID  ( 1st `  (
g `  n )
)  =  (/) )
6244, 46, 61ifcldadc 3501 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  e.  2o )
6362fmpttd 5575 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
64 2fveq3 5426 . . . . . . . . . . . . . 14  |-  ( w  =  n  ->  ( 1st `  ( g `  w ) )  =  ( 1st `  (
g `  n )
) )
6564eqeq1d 2148 . . . . . . . . . . . . 13  |-  ( w  =  n  ->  (
( 1st `  (
g `  w )
)  =  (/)  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
6665ifbid 3493 . . . . . . . . . . . 12  |-  ( w  =  n  ->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
67 eqcom 2141 . . . . . . . . . . . 12  |-  ( w  =  n  <->  n  =  w )
68 eqcom 2141 . . . . . . . . . . . 12  |-  ( if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
6966, 67, 683imtr3i 199 . . . . . . . . . . 11  |-  ( n  =  w  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7069cbvmptv 4024 . . . . . . . . . 10  |-  ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7170feq1i 5265 . . . . . . . . 9  |-  ( ( n  e.  om  |->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o  <->  ( w  e.  om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7263, 71sylib 121 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
73 2onn 6417 . . . . . . . . . 10  |-  2o  e.  om
7473elexi 2698 . . . . . . . . 9  |-  2o  e.  _V
7574, 2elmap 6571 . . . . . . . 8  |-  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) 
<->  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) : om --> 2o )
7672, 75sylibr 133 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
7737, 42, 76rspcdva 2794 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o 
->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
78 eqid 2139 . . . . . . . . . . . . 13  |-  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )  =  ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) )
7978, 66, 50, 62fvmptd3 5514 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
8079eqeq1d 2148 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o ) )
8151adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
g `  n )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
82 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o )
8382eqcomd 2145 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  1o  =  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) ) )
84 eqifdc 3506 . . . . . . . . . . . . . . . . . . 19  |-  (DECID  ( 1st `  ( g `  n
) )  =  (/)  ->  ( 1o  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
8561, 84syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) ) ) )
86 eqid 2139 . . . . . . . . . . . . . . . . . . 19  |-  1o  =  1o
87 orcom 717 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
8855intnan 914 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )
89 biorf 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( -.  ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  (/) )  -> 
( ( ( 1st `  ( g `  n
) )  =  (/)  /\  1o  =  1o )  <-> 
( ( -.  ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  (/) )  \/  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) ) ) )
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  <->  ( ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) )  \/  (
( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o ) ) )
9187, 90bitr4i 186 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( ( 1st `  ( g `  n ) )  =  (/)  /\  1o  =  1o ) )
9286, 91mpbiran2 925 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  1o )  \/  ( -.  ( 1st `  (
g `  n )
)  =  (/)  /\  1o  =  (/) ) )  <->  ( 1st `  ( g `  n
) )  =  (/) )
9385, 92syl6bb 195 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9493adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1o  =  if (
( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  <->  ( 1st `  ( g `  n
) )  =  (/) ) )
9583, 94mpbid 146 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 1st `  ( g `  n ) )  =  (/) )
96 eldju2ndl 6957 . . . . . . . . . . . . . . 15  |-  ( ( ( g `  n
)  e.  ( { z  e.  om  | 
y  =  { (/) } } 1o )  /\  ( 1st `  ( g `  n ) )  =  (/) )  ->  ( 2nd `  ( g `  n
) )  e.  {
z  e.  om  | 
y  =  { (/) } } )
9781, 95, 96syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  ( 2nd `  ( g `  n ) )  e. 
{ z  e.  om  |  y  =  { (/)
} } )
98 biidd 171 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 2nd `  (
g `  n )
)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
9998elrab 2840 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( g `
 n ) )  e.  { z  e. 
om  |  y  =  { (/) } }  <->  ( ( 2nd `  ( g `  n ) )  e. 
om  /\  y  =  { (/) } ) )
10097, 99sylib 121 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  (
( 2nd `  (
g `  n )
)  e.  om  /\  y  =  { (/) } ) )
101100simprd 113 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  n  e.  om )  /\  if ( ( 1st `  ( g `  n
) )  =  (/) ,  1o ,  (/) )  =  1o )  ->  y  =  { (/) } )
102101ex 114 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  ( if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) )  =  1o 
->  y  =  { (/)
} ) )
10380, 102sylbid 149 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  n  e.  om )  ->  (
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
104103rexlimdva 2549 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  ->  y  =  { (/) } ) )
105 simplr 519 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
106 biidd 171 . . . . . . . . . . . . . 14  |-  ( z  =  (/)  ->  ( y  =  { (/) }  <->  y  =  { (/) } ) )
107 peano1 4508 . . . . . . . . . . . . . . 15  |-  (/)  e.  om
108107a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  om )
109 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
110106, 108, 109elrabd 2842 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  (/) 
e.  { z  e. 
om  |  y  =  { (/) } } )
111 djulcl 6936 . . . . . . . . . . . . 13  |-  ( (/)  e.  { z  e.  om  |  y  =  { (/)
} }  ->  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )
112110, 111syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
(inl `  (/) )  e.  ( { z  e. 
om  |  y  =  { (/) } } 1o ) )
113 foelrn 5654 . . . . . . . . . . . 12  |-  ( ( g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o )  /\  (inl `  (/) )  e.  ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
114105, 112, 113syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  (inl `  (/) )  =  ( g `  n ) )
11579adantlr 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  if ( ( 1st `  (
g `  n )
)  =  (/) ,  1o ,  (/) ) )
116 1stinl 6959 . . . . . . . . . . . . . . . . 17  |-  ( (/)  e.  om  ->  ( 1st `  (inl `  (/) ) )  =  (/) )
117107, 116ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1st `  (inl `  (/) ) )  =  (/)
118 fveq2 5421 . . . . . . . . . . . . . . . 16  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (inl `  (/) ) )  =  ( 1st `  ( g `
 n ) ) )
119117, 118syl5reqr 2187 . . . . . . . . . . . . . . 15  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  ( 1st `  (
g `  n )
)  =  (/) )
120119iftrued 3481 . . . . . . . . . . . . . 14  |-  ( (inl
`  (/) )  =  ( g `  n )  ->  if ( ( 1st `  ( g `
 n ) )  =  (/) ,  1o ,  (/) )  =  1o )
121115, 120sylan9eq 2192 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/)
} } 1o ) )  /\  y  =  { (/)
} )  /\  n  e.  om )  /\  (inl `  (/) )  =  (
g `  n )
)  ->  ( (
w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o )
122121ex 114 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  | 
y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  /\  n  e.  om )  ->  ( (inl `  (/) )  =  ( g `
 n )  -> 
( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
123122reximdva 2534 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  -> 
( E. n  e. 
om  (inl `  (/) )  =  ( g `  n
)  ->  E. n  e.  om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o ) )
124114, 123mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  /\  y  =  { (/) } )  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o )
125124ex 114 . . . . . . . . 9  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  (
y  =  { (/) }  ->  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o ) )
126104, 125impbid 128 . . . . . . . 8  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  y  =  { (/) } ) )
127126notbid 656 . . . . . . 7  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  E. n  e.  om  ( ( w  e. 
om  |->  if ( ( 1st `  ( g `
 w ) )  =  (/) ,  1o ,  (/) ) ) `  n
)  =  1o  <->  -.  y  =  { (/) } ) )
128127notbid 656 . . . . . 6  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  E. n  e. 
om  ( ( w  e.  om  |->  if ( ( 1st `  (
g `  w )
)  =  (/) ,  1o ,  (/) ) ) `  n )  =  1o  <->  -. 
-.  y  =  { (/)
} ) )
12977, 128, 1263imtr3d 201 . . . . 5  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  ->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
130 df-stab 816 . . . . 5  |-  (STAB  y  =  { (/) }  <->  ( -.  -.  y  =  { (/)
}  ->  y  =  { (/) } ) )
131129, 130sylibr 133 . . . 4  |-  ( (
ph  /\  g : om -onto-> ( { z  e.  om  |  y  =  { (/) } } 1o ) )  -> STAB  y  =  { (/) } )
13231, 131exlimddv 1870 . . 3  |-  ( ph  -> STAB  y  =  { (/) } )
133132adantr 274 . 2  |-  ( (
ph  /\  y  C_  {
(/) } )  -> STAB  y  =  { (/) } )
134133exmid1stab 13195 1  |-  ( ph  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  STAB wstab 815  DECID wdc 819   A.wal 1329    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071   (/)c0 3363   ifcif 3474   {csn 3527    |-> cmpt 3989  EXMIDwem 4118    _I cid 4210   omcom 4504    |` cres 4541   -->wf 5119   -onto->wfo 5121   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   1oc1o 6306   2oc2o 6307    ^m cmap 6542   ⊔ cdju 6922  inlcinl 6930  Markovcmarkov 7025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-exmid 4119  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-map 6544  df-dju 6923  df-inl 6932  df-inr 6933  df-markov 7026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator