ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemres GIF version

Theorem axcaucvglemres 7127
Description: Lemma for axcaucvg 7128. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
axcaucvg.g 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
Assertion
Ref Expression
axcaucvglemres (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Distinct variable groups:   𝑘,𝐹,𝑗,𝑛   𝑦,𝐹,𝑗,𝑘   𝑧,𝐹,𝑗   𝑘,𝐺,𝑥,𝑙,𝑢   𝑛,𝐺,𝑙,𝑢,𝑧   𝑘,𝑁,𝑗,𝑛   𝑦,𝑁,𝑥   𝜑,𝑘,𝑥   𝑗,𝑙,𝑢,𝑦   𝜑,𝑗,𝑥   𝑘,𝑟,𝑙,𝑛,𝑢   𝑧,𝑙,𝑢   𝜑,𝑛   𝑥,𝑦   𝑗,𝑛,𝑧,𝑘   𝑥,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑟,𝑙)   𝐹(𝑥,𝑢,𝑟,𝑙)   𝐺(𝑦,𝑗,𝑟)   𝑁(𝑧,𝑢,𝑟,𝑙)

Proof of Theorem axcaucvglemres
Dummy variables 𝑏 𝑒 𝑓 𝑔 𝑎 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . . . 4 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 axcaucvg.f . . . 4 (𝜑𝐹:𝑁⟶ℝ)
3 axcaucvg.cau . . . 4 (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
4 axcaucvg.g . . . 4 𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
51, 2, 3, 4axcaucvglemf 7124 . . 3 (𝜑𝐺:NR)
61, 2, 3, 4axcaucvglemcau 7126 . . 3 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
75, 6caucvgsr 7040 . 2 (𝜑 → ∃𝑏R𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
8 opelreal 7058 . . . . 5 (⟨𝑏, 0R⟩ ∈ ℝ ↔ 𝑏R)
98biimpri 131 . . . 4 (𝑏R → ⟨𝑏, 0R⟩ ∈ ℝ)
109ad2antrl 474 . . 3 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))) → ⟨𝑏, 0R⟩ ∈ ℝ)
11 breq2 3797 . . . . . . . . . 10 (𝑑 = 𝑘 → (𝑐 <N 𝑑𝑐 <N 𝑘))
12 fveq2 5209 . . . . . . . . . . . 12 (𝑑 = 𝑘 → (𝐺𝑑) = (𝐺𝑘))
1312breq1d 3803 . . . . . . . . . . 11 (𝑑 = 𝑘 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ↔ (𝐺𝑘) <R (𝑏 +R 𝑎)))
1412oveq1d 5558 . . . . . . . . . . . 12 (𝑑 = 𝑘 → ((𝐺𝑑) +R 𝑎) = ((𝐺𝑘) +R 𝑎))
1514breq2d 3805 . . . . . . . . . . 11 (𝑑 = 𝑘 → (𝑏 <R ((𝐺𝑑) +R 𝑎) ↔ 𝑏 <R ((𝐺𝑘) +R 𝑎)))
1613, 15anbi12d 457 . . . . . . . . . 10 (𝑑 = 𝑘 → (((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)) ↔ ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))
1711, 16imbi12d 232 . . . . . . . . 9 (𝑑 = 𝑘 → ((𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
1817cbvralv 2578 . . . . . . . 8 (∀𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ ∀𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))
1918rexbii 2374 . . . . . . 7 (∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))
2019imbi2i 224 . . . . . 6 ((0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) ↔ (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
2120ralbii 2373 . . . . 5 (∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) ↔ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))
2221anbi2i 445 . . . 4 ((𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))))) ↔ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎))))))
23 elreal 7059 . . . . . . . . 9 (𝑥 ∈ ℝ ↔ ∃𝑒R𝑒, 0R⟩ = 𝑥)
2423biimpi 118 . . . . . . . 8 (𝑥 ∈ ℝ → ∃𝑒R𝑒, 0R⟩ = 𝑥)
2524ad2antlr 473 . . . . . . 7 ((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) → ∃𝑒R𝑒, 0R⟩ = 𝑥)
26 simplrr 503 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) → ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))
2726ad2antrr 472 . . . . . . . . . 10 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))
28 simprr 499 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ⟨𝑒, 0R⟩ = 𝑥)
29 simplr 497 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → 0 < 𝑥)
30 df-0 7050 . . . . . . . . . . . . . . 15 0 = ⟨0R, 0R
3130breq1i 3800 . . . . . . . . . . . . . 14 (0 <𝑒, 0R⟩ ↔ ⟨0R, 0R⟩ <𝑒, 0R⟩)
32 ltresr 7069 . . . . . . . . . . . . . 14 (⟨0R, 0R⟩ <𝑒, 0R⟩ ↔ 0R <R 𝑒)
3331, 32bitri 182 . . . . . . . . . . . . 13 (0 <𝑒, 0R⟩ ↔ 0R <R 𝑒)
34 breq2 3797 . . . . . . . . . . . . 13 (⟨𝑒, 0R⟩ = 𝑥 → (0 <𝑒, 0R⟩ ↔ 0 < 𝑥))
3533, 34syl5rbbr 193 . . . . . . . . . . . 12 (⟨𝑒, 0R⟩ = 𝑥 → (0 < 𝑥 ↔ 0R <R 𝑒))
3635biimpa 290 . . . . . . . . . . 11 ((⟨𝑒, 0R⟩ = 𝑥 ∧ 0 < 𝑥) → 0R <R 𝑒)
3728, 29, 36syl2anc 403 . . . . . . . . . 10 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → 0R <R 𝑒)
38 breq2 3797 . . . . . . . . . . . . 13 (𝑎 = 𝑒 → (0R <R 𝑎 ↔ 0R <R 𝑒))
39 oveq2 5551 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑒 → (𝑏 +R 𝑎) = (𝑏 +R 𝑒))
4039breq2d 3805 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑒 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ↔ (𝐺𝑑) <R (𝑏 +R 𝑒)))
41 oveq2 5551 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑒 → ((𝐺𝑑) +R 𝑎) = ((𝐺𝑑) +R 𝑒))
4241breq2d 3805 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑒 → (𝑏 <R ((𝐺𝑑) +R 𝑎) ↔ 𝑏 <R ((𝐺𝑑) +R 𝑒)))
4340, 42anbi12d 457 . . . . . . . . . . . . . . 15 (𝑎 = 𝑒 → (((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)) ↔ ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
4443imbi2d 228 . . . . . . . . . . . . . 14 (𝑎 = 𝑒 → ((𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
4544rexralbidv 2393 . . . . . . . . . . . . 13 (𝑎 = 𝑒 → (∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎))) ↔ ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
4638, 45imbi12d 232 . . . . . . . . . . . 12 (𝑎 = 𝑒 → ((0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) ↔ (0R <R 𝑒 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))))
4746rspcv 2698 . . . . . . . . . . 11 (𝑒R → (∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) → (0R <R 𝑒 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))))
4847ad2antrl 474 . . . . . . . . . 10 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → (∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))) → (0R <R 𝑒 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))))
4927, 37, 48mp2d 46 . . . . . . . . 9 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
50 breq1 3796 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑐 <N 𝑑𝑓 <N 𝑑))
5150imbi1d 229 . . . . . . . . . . 11 (𝑐 = 𝑓 → ((𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
5251ralbidv 2369 . . . . . . . . . 10 (𝑐 = 𝑓 → (∀𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)))))
5352cbvrexv 2579 . . . . . . . . 9 (∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ ∃𝑓N𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
5449, 53sylib 120 . . . . . . . 8 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∃𝑓N𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
55 pitonn 7078 . . . . . . . . . . 11 (𝑓N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
5655, 1syl6eleqr 2173 . . . . . . . . . 10 (𝑓N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
5756ad2antrl 474 . . . . . . . . 9 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁)
581nntopi 7122 . . . . . . . . . . . 12 (𝑘𝑁 → ∃𝑔N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
5958adantl 271 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → ∃𝑔N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
60 simprl 498 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑔N)
61 simplrr 503 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
6261adantr 270 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))
63 breq2 3797 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝑓 <N 𝑑𝑓 <N 𝑔))
64 fveq2 5209 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑔 → (𝐺𝑑) = (𝐺𝑔))
6564breq1d 3803 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑔 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ↔ (𝐺𝑔) <R (𝑏 +R 𝑒)))
6664oveq1d 5558 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑔 → ((𝐺𝑑) +R 𝑒) = ((𝐺𝑔) +R 𝑒))
6766breq2d 3805 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑔 → (𝑏 <R ((𝐺𝑑) +R 𝑒) ↔ 𝑏 <R ((𝐺𝑔) +R 𝑒)))
6865, 67anbi12d 457 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒)) ↔ ((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒))))
6963, 68imbi12d 232 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) ↔ (𝑓 <N 𝑔 → ((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒)))))
7069rspcv 2698 . . . . . . . . . . . . 13 (𝑔N → (∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))) → (𝑓 <N 𝑔 → ((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒)))))
7160, 62, 70sylc 61 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑓 <N 𝑔 → ((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒))))
72 simplrl 502 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → 𝑓N)
7372adantr 270 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑓N)
74 ltrennb 7084 . . . . . . . . . . . . . 14 ((𝑓N𝑔N) → (𝑓 <N 𝑔 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
7573, 60, 74syl2anc 403 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑓 <N 𝑔 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
76 simprr 499 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
7776breq2d 3805 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘))
7875, 77bitrd 186 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑓 <N 𝑔 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘))
79 ltresr 7069 . . . . . . . . . . . . . 14 (⟨(𝐺𝑔), 0R⟩ < ⟨(𝑏 +R 𝑒), 0R⟩ ↔ (𝐺𝑔) <R (𝑏 +R 𝑒))
80 simplll 500 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) → 𝜑)
8180ad4antr 478 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝜑)
821, 2, 3, 4axcaucvglemval 7125 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑔), 0R⟩)
8381, 60, 82syl2anc 403 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝑔), 0R⟩)
8476fveq2d 5213 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (𝐹𝑘))
8583, 84eqtr3d 2116 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨(𝐺𝑔), 0R⟩ = (𝐹𝑘))
86 simplrl 502 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) → 𝑏R)
8786ad5antr 480 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑏R)
88 simplrl 502 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → 𝑒R)
8988ad2antrr 472 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝑒R)
90 addresr 7067 . . . . . . . . . . . . . . . . 17 ((𝑏R𝑒R) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = ⟨(𝑏 +R 𝑒), 0R⟩)
9187, 89, 90syl2anc 403 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = ⟨(𝑏 +R 𝑒), 0R⟩)
9228oveq2d 5559 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = (⟨𝑏, 0R⟩ + 𝑥))
9392ad3antrrr 476 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨𝑏, 0R⟩ + ⟨𝑒, 0R⟩) = (⟨𝑏, 0R⟩ + 𝑥))
9491, 93eqtr3d 2116 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨(𝑏 +R 𝑒), 0R⟩ = (⟨𝑏, 0R⟩ + 𝑥))
9585, 94breq12d 3806 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨(𝐺𝑔), 0R⟩ < ⟨(𝑏 +R 𝑒), 0R⟩ ↔ (𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥)))
9679, 95syl5bbr 192 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ((𝐺𝑔) <R (𝑏 +R 𝑒) ↔ (𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥)))
97 ltresr 7069 . . . . . . . . . . . . . 14 (⟨𝑏, 0R⟩ < ⟨((𝐺𝑔) +R 𝑒), 0R⟩ ↔ 𝑏 <R ((𝐺𝑔) +R 𝑒))
9881, 5syl 14 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → 𝐺:NR)
9998, 60ffvelrnd 5335 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝐺𝑔) ∈ R)
100 addresr 7067 . . . . . . . . . . . . . . . . 17 (((𝐺𝑔) ∈ R𝑒R) → (⟨(𝐺𝑔), 0R⟩ + ⟨𝑒, 0R⟩) = ⟨((𝐺𝑔) +R 𝑒), 0R⟩)
10199, 89, 100syl2anc 403 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨(𝐺𝑔), 0R⟩ + ⟨𝑒, 0R⟩) = ⟨((𝐺𝑔) +R 𝑒), 0R⟩)
10228ad3antrrr 476 . . . . . . . . . . . . . . . . 17 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨𝑒, 0R⟩ = 𝑥)
10385, 102oveq12d 5561 . . . . . . . . . . . . . . . 16 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨(𝐺𝑔), 0R⟩ + ⟨𝑒, 0R⟩) = ((𝐹𝑘) + 𝑥))
104101, 103eqtr3d 2116 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → ⟨((𝐺𝑔) +R 𝑒), 0R⟩ = ((𝐹𝑘) + 𝑥))
105104breq2d 3805 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨𝑏, 0R⟩ < ⟨((𝐺𝑔) +R 𝑒), 0R⟩ ↔ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))
10697, 105syl5bbr 192 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (𝑏 <R ((𝐺𝑔) +R 𝑒) ↔ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))
10796, 106anbi12d 457 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (((𝐺𝑔) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑔) +R 𝑒)) ↔ ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
10871, 78, 1073imtr3d 200 . . . . . . . . . . 11 ((((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) ∧ (𝑔N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑔, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑔, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
10959, 108rexlimddv 2482 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) ∧ 𝑘𝑁) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
110109ralrimiva 2435 . . . . . . . . 9 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → ∀𝑘𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
111 breq1 3796 . . . . . . . . . . . 12 (𝑗 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (𝑗 < 𝑘 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘))
112111imbi1d 229 . . . . . . . . . . 11 (𝑗 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ((𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))) ↔ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
113112ralbidv 2369 . . . . . . . . . 10 (𝑗 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → (∀𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑘𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
114113rspcev 2702 . . . . . . . . 9 ((⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ 𝑁 ∧ ∀𝑘𝑁 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑓, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑓, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
11557, 110, 114syl2anc 403 . . . . . . . 8 ((((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) ∧ (𝑓N ∧ ∀𝑑N (𝑓 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑒) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑒))))) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
11654, 115rexlimddv 2482 . . . . . . 7 (((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) ∧ (𝑒R ∧ ⟨𝑒, 0R⟩ = 𝑥)) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
11725, 116rexlimddv 2482 . . . . . 6 ((((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) ∧ 0 < 𝑥) → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
118117ex 113 . . . . 5 (((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
119118ralrimiva 2435 . . . 4 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑑N (𝑐 <N 𝑑 → ((𝐺𝑑) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑑) +R 𝑎)))))) → ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
12022, 119sylan2br 282 . . 3 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))) → ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
121 oveq1 5550 . . . . . . . . . 10 (𝑦 = ⟨𝑏, 0R⟩ → (𝑦 + 𝑥) = (⟨𝑏, 0R⟩ + 𝑥))
122121breq2d 3805 . . . . . . . . 9 (𝑦 = ⟨𝑏, 0R⟩ → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥)))
123 breq1 3796 . . . . . . . . 9 (𝑦 = ⟨𝑏, 0R⟩ → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))
124122, 123anbi12d 457 . . . . . . . 8 (𝑦 = ⟨𝑏, 0R⟩ → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))
125124imbi2d 228 . . . . . . 7 (𝑦 = ⟨𝑏, 0R⟩ → ((𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
126125rexralbidv 2393 . . . . . 6 (𝑦 = ⟨𝑏, 0R⟩ → (∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥)))))
127126imbi2d 228 . . . . 5 (𝑦 = ⟨𝑏, 0R⟩ → ((0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))))
128127ralbidv 2369 . . . 4 (𝑦 = ⟨𝑏, 0R⟩ → (∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))))
129128rspcev 2702 . . 3 ((⟨𝑏, 0R⟩ ∈ ℝ ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (⟨𝑏, 0R⟩ + 𝑥) ∧ ⟨𝑏, 0R⟩ < ((𝐹𝑘) + 𝑥))))) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
13010, 120, 129syl2anc 403 . 2 ((𝜑 ∧ (𝑏R ∧ ∀𝑎R (0R <R 𝑎 → ∃𝑐N𝑘N (𝑐 <N 𝑘 → ((𝐺𝑘) <R (𝑏 +R 𝑎) ∧ 𝑏 <R ((𝐺𝑘) +R 𝑎)))))) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1317, 130rexlimddv 2482 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  {cab 2068  wral 2349  wrex 2350  cop 3409   cint 3644   class class class wbr 3793  cmpt 3847  wf 4928  cfv 4932  crio 5498  (class class class)co 5543  1𝑜c1o 6058  [cec 6170  Ncnpi 6524   <N clti 6527   ~Q ceq 6531   <Q cltq 6537  1Pc1p 6544   +P cpp 6545   ~R cer 6548  Rcnr 6549  0Rc0r 6550   +R cplr 6553   <R cltr 6555  cr 7042  0cc0 7043  1c1 7044   + caddc 7046   < cltrr 7047   · cmul 7048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-i1p 6719  df-iplp 6720  df-imp 6721  df-iltp 6722  df-enr 6965  df-nr 6966  df-plr 6967  df-mr 6968  df-ltr 6969  df-0r 6970  df-1r 6971  df-m1r 6972  df-c 7049  df-0 7050  df-1 7051  df-r 7053  df-add 7054  df-mul 7055  df-lt 7056
This theorem is referenced by:  axcaucvg  7128
  Copyright terms: Public domain W3C validator