ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemres Unicode version

Theorem axcaucvglemres 7707
Description: Lemma for axcaucvg 7708. Mapping the limit from  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
axcaucvg.g  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
Assertion
Ref Expression
axcaucvglemres  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
Distinct variable groups:    k, F, j, n    y, F, j, k    z, F, j   
k, G, x, l, u    n, G, l, u, z    k, N, j, n    y, N, x    ph, k, x    j,
l, u, y    ph, j, x    k, r, l, n, u    z, l, u    ph, n    x, y    j, n, z, k    x, l, u
Allowed substitution hints:    ph( y, z, u, r, l)    F( x, u, r, l)    G( y, j, r)    N( z, u, r, l)

Proof of Theorem axcaucvglemres
Dummy variables  b  e  f  g  a  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . . . 4  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2 axcaucvg.f . . . 4  |-  ( ph  ->  F : N --> RR )
3 axcaucvg.cau . . . 4  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
4 axcaucvg.g . . . 4  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
51, 2, 3, 4axcaucvglemf 7704 . . 3  |-  ( ph  ->  G : N. --> R. )
61, 2, 3, 4axcaucvglemcau 7706 . . 3  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
75, 6caucvgsr 7610 . 2  |-  ( ph  ->  E. b  e.  R.  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. k  e. 
N.  ( c  <N 
k  ->  ( ( G `  k )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  k
)  +R  a ) ) ) ) )
8 opelreal 7635 . . . . 5  |-  ( <.
b ,  0R >.  e.  RR  <->  b  e.  R. )
98biimpri 132 . . . 4  |-  ( b  e.  R.  ->  <. b ,  0R >.  e.  RR )
109ad2antrl 481 . . 3  |-  ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. k  e.  N.  (
c  <N  k  ->  (
( G `  k
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  k )  +R  a
) ) ) ) ) )  ->  <. b ,  0R >.  e.  RR )
11 breq2 3933 . . . . . . . . . 10  |-  ( d  =  k  ->  (
c  <N  d  <->  c  <N  k ) )
12 fveq2 5421 . . . . . . . . . . . 12  |-  ( d  =  k  ->  ( G `  d )  =  ( G `  k ) )
1312breq1d 3939 . . . . . . . . . . 11  |-  ( d  =  k  ->  (
( G `  d
)  <R  ( b  +R  a )  <->  ( G `  k )  <R  (
b  +R  a ) ) )
1412oveq1d 5789 . . . . . . . . . . . 12  |-  ( d  =  k  ->  (
( G `  d
)  +R  a )  =  ( ( G `
 k )  +R  a ) )
1514breq2d 3941 . . . . . . . . . . 11  |-  ( d  =  k  ->  (
b  <R  ( ( G `
 d )  +R  a )  <->  b  <R  ( ( G `  k
)  +R  a ) ) )
1613, 15anbi12d 464 . . . . . . . . . 10  |-  ( d  =  k  ->  (
( ( G `  d )  <R  (
b  +R  a )  /\  b  <R  (
( G `  d
)  +R  a ) )  <->  ( ( G `
 k )  <R 
( b  +R  a
)  /\  b  <R  ( ( G `  k
)  +R  a ) ) ) )
1711, 16imbi12d 233 . . . . . . . . 9  |-  ( d  =  k  ->  (
( c  <N  d  ->  ( ( G `  d )  <R  (
b  +R  a )  /\  b  <R  (
( G `  d
)  +R  a ) ) )  <->  ( c  <N  k  ->  ( ( G `  k )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  k
)  +R  a ) ) ) ) )
1817cbvralv 2654 . . . . . . . 8  |-  ( A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) )  <->  A. k  e.  N.  ( c  <N 
k  ->  ( ( G `  k )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  k
)  +R  a ) ) ) )
1918rexbii 2442 . . . . . . 7  |-  ( E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) )  <->  E. c  e.  N.  A. k  e. 
N.  ( c  <N 
k  ->  ( ( G `  k )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  k
)  +R  a ) ) ) )
2019imbi2i 225 . . . . . 6  |-  ( ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) )  <-> 
( 0R  <R  a  ->  E. c  e.  N.  A. k  e.  N.  (
c  <N  k  ->  (
( G `  k
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  k )  +R  a
) ) ) ) )
2120ralbii 2441 . . . . 5  |-  ( A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) )  <->  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. k  e.  N.  (
c  <N  k  ->  (
( G `  k
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  k )  +R  a
) ) ) ) )
2221anbi2i 452 . . . 4  |-  ( ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) )  <-> 
( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. k  e.  N.  (
c  <N  k  ->  (
( G `  k
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  k )  +R  a
) ) ) ) ) )
23 elreal 7636 . . . . . . . . 9  |-  ( x  e.  RR  <->  E. e  e.  R.  <. e ,  0R >.  =  x )
2423biimpi 119 . . . . . . . 8  |-  ( x  e.  RR  ->  E. e  e.  R.  <. e ,  0R >.  =  x )
2524ad2antlr 480 . . . . . . 7  |-  ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  ->  E. e  e.  R.  <. e ,  0R >.  =  x )
26 simplrr 525 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) ) )  /\  x  e.  RR )  ->  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) )
2726ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  ->  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) )
28 simprr 521 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  ->  <. e ,  0R >.  =  x )
29 simplr 519 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  -> 
0  <RR  x )
30 df-0 7627 . . . . . . . . . . . . . . 15  |-  0  =  <. 0R ,  0R >.
3130breq1i 3936 . . . . . . . . . . . . . 14  |-  ( 0 
<RR  <. e ,  0R >.  <->  <. 0R ,  0R >.  <RR  <. e ,  0R >. )
32 ltresr 7647 . . . . . . . . . . . . . 14  |-  ( <. 0R ,  0R >.  <RR  <. e ,  0R >.  <->  0R  <R  e )
3331, 32bitri 183 . . . . . . . . . . . . 13  |-  ( 0 
<RR  <. e ,  0R >.  <-> 
0R  <R  e )
34 breq2 3933 . . . . . . . . . . . . 13  |-  ( <.
e ,  0R >.  =  x  ->  ( 0 
<RR  <. e ,  0R >.  <->  0  <RR  x ) )
3533, 34syl5rbbr 194 . . . . . . . . . . . 12  |-  ( <.
e ,  0R >.  =  x  ->  ( 0 
<RR  x  <->  0R  <R  e ) )
3635biimpa 294 . . . . . . . . . . 11  |-  ( (
<. e ,  0R >.  =  x  /\  0  <RR  x )  ->  0R  <R  e )
3728, 29, 36syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  ->  0R  <R  e )
38 breq2 3933 . . . . . . . . . . . . 13  |-  ( a  =  e  ->  ( 0R  <R  a  <->  0R  <R  e ) )
39 oveq2 5782 . . . . . . . . . . . . . . . . 17  |-  ( a  =  e  ->  (
b  +R  a )  =  ( b  +R  e ) )
4039breq2d 3941 . . . . . . . . . . . . . . . 16  |-  ( a  =  e  ->  (
( G `  d
)  <R  ( b  +R  a )  <->  ( G `  d )  <R  (
b  +R  e ) ) )
41 oveq2 5782 . . . . . . . . . . . . . . . . 17  |-  ( a  =  e  ->  (
( G `  d
)  +R  a )  =  ( ( G `
 d )  +R  e ) )
4241breq2d 3941 . . . . . . . . . . . . . . . 16  |-  ( a  =  e  ->  (
b  <R  ( ( G `
 d )  +R  a )  <->  b  <R  ( ( G `  d
)  +R  e ) ) )
4340, 42anbi12d 464 . . . . . . . . . . . . . . 15  |-  ( a  =  e  ->  (
( ( G `  d )  <R  (
b  +R  a )  /\  b  <R  (
( G `  d
)  +R  a ) )  <->  ( ( G `
 d )  <R 
( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) )
4443imbi2d 229 . . . . . . . . . . . . . 14  |-  ( a  =  e  ->  (
( c  <N  d  ->  ( ( G `  d )  <R  (
b  +R  a )  /\  b  <R  (
( G `  d
)  +R  a ) ) )  <->  ( c  <N  d  ->  ( ( G `  d )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) ) )
4544rexralbidv 2461 . . . . . . . . . . . . 13  |-  ( a  =  e  ->  ( E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) )  <->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) ) )
4638, 45imbi12d 233 . . . . . . . . . . . 12  |-  ( a  =  e  ->  (
( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) )  <-> 
( 0R  <R  e  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  e )  /\  b  <R  ( ( G `  d )  +R  e
) ) ) ) ) )
4746rspcv 2785 . . . . . . . . . . 11  |-  ( e  e.  R.  ->  ( A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) )  ->  ( 0R  <R  e  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  e )  /\  b  <R  ( ( G `  d )  +R  e
) ) ) ) ) )
4847ad2antrl 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  -> 
( A. a  e. 
R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) )  ->  ( 0R  <R  e  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  e )  /\  b  <R  ( ( G `  d )  +R  e
) ) ) ) ) )
4927, 37, 48mp2d 47 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  e )  /\  b  <R  ( ( G `  d )  +R  e
) ) ) )
50 breq1 3932 . . . . . . . . . . . 12  |-  ( c  =  f  ->  (
c  <N  d  <->  f  <N  d ) )
5150imbi1d 230 . . . . . . . . . . 11  |-  ( c  =  f  ->  (
( c  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) )  <->  ( f  <N  d  ->  ( ( G `  d )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) ) )
5251ralbidv 2437 . . . . . . . . . 10  |-  ( c  =  f  ->  ( A. d  e.  N.  ( c  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) )  <->  A. d  e.  N.  ( f  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) ) )
5352cbvrexv 2655 . . . . . . . . 9  |-  ( E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  e )  /\  b  <R  ( ( G `  d )  +R  e
) ) )  <->  E. f  e.  N.  A. d  e. 
N.  ( f  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) )
5449, 53sylib 121 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  ->  E. f  e.  N.  A. d  e.  N.  (
f  <N  d  ->  (
( G `  d
)  <R  ( b  +R  e )  /\  b  <R  ( ( G `  d )  +R  e
) ) ) )
55 pitonn 7656 . . . . . . . . . . 11  |-  ( f  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
5655, 1eleqtrrdi 2233 . . . . . . . . . 10  |-  ( f  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
5756ad2antrl 481 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  ->  <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
581nntopi 7702 . . . . . . . . . . . 12  |-  ( k  e.  N  ->  E. g  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )
5958adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  ->  E. g  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )
60 breq2 3933 . . . . . . . . . . . . . 14  |-  ( d  =  g  ->  (
f  <N  d  <->  f  <N  g ) )
61 fveq2 5421 . . . . . . . . . . . . . . . 16  |-  ( d  =  g  ->  ( G `  d )  =  ( G `  g ) )
6261breq1d 3939 . . . . . . . . . . . . . . 15  |-  ( d  =  g  ->  (
( G `  d
)  <R  ( b  +R  e )  <->  ( G `  g )  <R  (
b  +R  e ) ) )
6361oveq1d 5789 . . . . . . . . . . . . . . . 16  |-  ( d  =  g  ->  (
( G `  d
)  +R  e )  =  ( ( G `
 g )  +R  e ) )
6463breq2d 3941 . . . . . . . . . . . . . . 15  |-  ( d  =  g  ->  (
b  <R  ( ( G `
 d )  +R  e )  <->  b  <R  ( ( G `  g
)  +R  e ) ) )
6562, 64anbi12d 464 . . . . . . . . . . . . . 14  |-  ( d  =  g  ->  (
( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) )  <->  ( ( G `
 g )  <R 
( b  +R  e
)  /\  b  <R  ( ( G `  g
)  +R  e ) ) ) )
6660, 65imbi12d 233 . . . . . . . . . . . . 13  |-  ( d  =  g  ->  (
( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) )  <->  ( f  <N  g  ->  ( ( G `  g )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  g
)  +R  e ) ) ) ) )
67 simplrr 525 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  ->  A. d  e.  N.  ( f  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) )
6867adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  A. d  e.  N.  ( f  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  d
)  +R  e ) ) ) )
69 simprl 520 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  g  e.  N. )
7066, 68, 69rspcdva 2794 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( f  <N  g  ->  ( ( G `  g )  <R  ( b  +R  e
)  /\  b  <R  ( ( G `  g
)  +R  e ) ) ) )
71 simplrl 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  ->  f  e.  N. )
7271adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  f  e.  N. )
73 ltrennb 7662 . . . . . . . . . . . . . 14  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  <N  g  <->  <. [ <. ( <. { l  |  l  <Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
7472, 69, 73syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( f  <N  g  <->  <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
75 simprr 521 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )
7675breq2d 3941 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<-> 
<. [ <. ( <. { l  |  l  <Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k ) )
7774, 76bitrd 187 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( f  <N  g  <->  <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k ) )
78 ltresr 7647 . . . . . . . . . . . . . 14  |-  ( <.
( G `  g
) ,  0R >.  <RR  <. ( b  +R  e
) ,  0R >.  <->  ( G `  g )  <R  ( b  +R  e
) )
79 simplll 522 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  ->  ph )
8079ad4antr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ph )
811, 2, 3, 4axcaucvglemval 7705 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  g  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  g ) ,  0R >. )
8280, 69, 81syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  g ) ,  0R >. )
8375fveq2d 5425 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  ( F `  k ) )
8482, 83eqtr3d 2174 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  <. ( G `
 g ) ,  0R >.  =  ( F `  k )
)
85 simplrl 524 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) ) )  /\  x  e.  RR )  ->  b  e.  R. )
8685ad5antr 487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  b  e.  R. )
87 simplrl 524 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  ->  e  e.  R. )
8887ad2antrr 479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  e  e.  R. )
89 addresr 7645 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  R.  /\  e  e.  R. )  ->  ( <. b ,  0R >.  +  <. e ,  0R >. )  =  <. (
b  +R  e ) ,  0R >. )
9086, 88, 89syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. b ,  0R >.  +  <. e ,  0R >. )  =  <. ( b  +R  e ) ,  0R >. )
9128oveq2d 5790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  -> 
( <. b ,  0R >.  +  <. e ,  0R >. )  =  ( <.
b ,  0R >.  +  x ) )
9291ad3antrrr 483 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. b ,  0R >.  +  <. e ,  0R >. )  =  ( <. b ,  0R >.  +  x
) )
9390, 92eqtr3d 2174 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  <. ( b  +R  e ) ,  0R >.  =  ( <. b ,  0R >.  +  x ) )
9484, 93breq12d 3942 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. ( G `  g ) ,  0R >.  <RR  <. (
b  +R  e ) ,  0R >.  <->  ( F `  k )  <RR  ( <.
b ,  0R >.  +  x ) ) )
9578, 94syl5bbr 193 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( ( G `  g )  <R  ( b  +R  e
)  <->  ( F `  k )  <RR  ( <.
b ,  0R >.  +  x ) ) )
96 ltresr 7647 . . . . . . . . . . . . . 14  |-  ( <.
b ,  0R >.  <RR  <. ( ( G `  g )  +R  e
) ,  0R >.  <->  b  <R  ( ( G `  g )  +R  e
) )
9780, 5syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  G : N.
--> R. )
9897, 69ffvelrnd 5556 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( G `  g )  e.  R. )
99 addresr 7645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  g
)  e.  R.  /\  e  e.  R. )  ->  ( <. ( G `  g ) ,  0R >.  +  <. e ,  0R >. )  =  <. (
( G `  g
)  +R  e ) ,  0R >. )
10098, 88, 99syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. ( G `  g ) ,  0R >.  +  <. e ,  0R >. )  =  <. ( ( G `
 g )  +R  e ) ,  0R >. )
10128ad3antrrr 483 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  <. e ,  0R >.  =  x
)
10284, 101oveq12d 5792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. ( G `  g ) ,  0R >.  +  <. e ,  0R >. )  =  ( ( F `
 k )  +  x ) )
103100, 102eqtr3d 2174 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  <. ( ( G `  g )  +R  e ) ,  0R >.  =  (
( F `  k
)  +  x ) )
104103breq2d 3941 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. b ,  0R >.  <RR  <. (
( G `  g
)  +R  e ) ,  0R >.  <->  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) )
10596, 104syl5bbr 193 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( b  <R  ( ( G `  g )  +R  e
)  <->  <. b ,  0R >. 
<RR  ( ( F `  k )  +  x
) ) )
10695, 105anbi12d 464 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( (
( G `  g
)  <R  ( b  +R  e )  /\  b  <R  ( ( G `  g )  +R  e
) )  <->  ( ( F `  k )  <RR  ( <. b ,  0R >.  +  x )  /\  <.
b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) ) )
10770, 77, 1063imtr3d 201 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  /\  ( g  e.  N.  /\  <. [ <. (
<. { l  |  l 
<Q  [ <. g ,  1o >. ]  ~Q  } ,  { u  |  [ <. g ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) )
10859, 107rexlimddv 2554 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  /\  k  e.  N
)  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) )
109108ralrimiva 2505 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  ->  A. k  e.  N  ( <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) )
110 breq1 3932 . . . . . . . . . . . 12  |-  ( j  =  <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( j  <RR  k  <->  <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k ) )
111110imbi1d 230 . . . . . . . . . . 11  |-  ( j  =  <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
j  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) )  <->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) ) )
112111ralbidv 2437 . . . . . . . . . 10  |-  ( j  =  <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( A. k  e.  N  (
j  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) )  <->  A. k  e.  N  ( <. [ <. ( <. { l  |  l 
<Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) ) )
113112rspcev 2789 . . . . . . . . 9  |-  ( (
<. [ <. ( <. { l  |  l  <Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N  /\  A. k  e.  N  (
<. [ <. ( <. { l  |  l  <Q  [ <. f ,  1o >. ]  ~Q  } ,  { u  |  [ <. f ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  k  ->  (
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
)  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) )  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( <. b ,  0R >.  +  x )  /\  <.
b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) ) )
11457, 109, 113syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  /\  ( f  e.  N.  /\ 
A. d  e.  N.  ( f  <N  d  ->  ( ( G `  d )  <R  (
b  +R  e )  /\  b  <R  (
( G `  d
)  +R  e ) ) ) ) )  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( <.
b ,  0R >.  +  x )  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) )
11554, 114rexlimddv 2554 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  /\  (
e  e.  R.  /\  <.
e ,  0R >.  =  x ) )  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( <.
b ,  0R >.  +  x )  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) )
11625, 115rexlimddv 2554 . . . . . 6  |-  ( ( ( ( ph  /\  ( b  e.  R.  /\ 
A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  /\  x  e.  RR )  /\  0  <RR  x )  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( <. b ,  0R >.  +  x )  /\  <.
b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) ) )
117116ex 114 . . . . 5  |-  ( ( ( ph  /\  (
b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( G `  d )  <R  ( b  +R  a
)  /\  b  <R  ( ( G `  d
)  +R  a ) ) ) ) ) )  /\  x  e.  RR )  ->  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( <. b ,  0R >.  +  x )  /\  <.
b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) ) ) )
118117ralrimiva 2505 . . . 4  |-  ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( G `  d
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  d )  +R  a
) ) ) ) ) )  ->  A. x  e.  RR  ( 0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( <.
b ,  0R >.  +  x )  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) ) )
11922, 118sylan2br 286 . . 3  |-  ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. k  e.  N.  (
c  <N  k  ->  (
( G `  k
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  k )  +R  a
) ) ) ) ) )  ->  A. x  e.  RR  ( 0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( <.
b ,  0R >.  +  x )  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) ) )
120 oveq1 5781 . . . . . . . . . 10  |-  ( y  =  <. b ,  0R >.  ->  ( y  +  x )  =  (
<. b ,  0R >.  +  x ) )
121120breq2d 3941 . . . . . . . . 9  |-  ( y  =  <. b ,  0R >.  ->  ( ( F `
 k )  <RR  ( y  +  x )  <-> 
( F `  k
)  <RR  ( <. b ,  0R >.  +  x
) ) )
122 breq1 3932 . . . . . . . . 9  |-  ( y  =  <. b ,  0R >.  ->  ( y  <RR  ( ( F `  k
)  +  x )  <->  <. b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) )
123121, 122anbi12d 464 . . . . . . . 8  |-  ( y  =  <. b ,  0R >.  ->  ( ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) )  <->  ( ( F `
 k )  <RR  (
<. b ,  0R >.  +  x )  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) )
124123imbi2d 229 . . . . . . 7  |-  ( y  =  <. b ,  0R >.  ->  ( ( j 
<RR  k  ->  ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  <->  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( <. b ,  0R >.  +  x )  /\  <.
b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) ) ) )
125124rexralbidv 2461 . . . . . 6  |-  ( y  =  <. b ,  0R >.  ->  ( E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  <->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( <. b ,  0R >.  +  x )  /\  <.
b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) ) ) )
126125imbi2d 229 . . . . 5  |-  ( y  =  <. b ,  0R >.  ->  ( ( 0 
<RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) )  <->  ( 0 
<RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( <. b ,  0R >.  +  x )  /\  <.
b ,  0R >.  <RR  ( ( F `  k )  +  x
) ) ) ) ) )
127126ralbidv 2437 . . . 4  |-  ( y  =  <. b ,  0R >.  ->  ( A. x  e.  RR  ( 0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) ) )  <->  A. x  e.  RR  ( 0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( <.
b ,  0R >.  +  x )  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) ) ) )
128127rspcev 2789 . . 3  |-  ( (
<. b ,  0R >.  e.  RR  /\  A. x  e.  RR  ( 0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( <.
b ,  0R >.  +  x )  /\  <. b ,  0R >.  <RR  ( ( F `  k )  +  x ) ) ) ) )  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
12910, 119, 128syl2anc 408 . 2  |-  ( (
ph  /\  ( b  e.  R.  /\  A. a  e.  R.  ( 0R  <R  a  ->  E. c  e.  N.  A. k  e.  N.  (
c  <N  k  ->  (
( G `  k
)  <R  ( b  +R  a )  /\  b  <R  ( ( G `  k )  +R  a
) ) ) ) ) )  ->  E. y  e.  RR  A. x  e.  RR  ( 0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) ) ) )
1307, 129rexlimddv 2554 1  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   <.cop 3530   |^|cint 3771   class class class wbr 3929    |-> cmpt 3989   -->wf 5119   ` cfv 5123   iota_crio 5729  (class class class)co 5774   1oc1o 6306   [cec 6427   N.cnpi 7080    <N clti 7083    ~Q ceq 7087    <Q cltq 7093   1Pc1p 7100    +P. cpp 7101    ~R cer 7104   R.cnr 7105   0Rc0r 7106    +R cplr 7109    <R cltr 7111   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    <RR cltrr 7624    x. cmul 7625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-ltr 7538  df-0r 7539  df-1r 7540  df-m1r 7541  df-c 7626  df-0 7627  df-1 7628  df-r 7630  df-add 7631  df-mul 7632  df-lt 7633
This theorem is referenced by:  axcaucvg  7708
  Copyright terms: Public domain W3C validator