ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm GIF version

Theorem cvgratnnlemfm 11298
Description: Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemfm.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemfm (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5421 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
21eleq1d 2208 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
3 cvgratnn.6 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
43ralrimiva 2505 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5 cvgratnnlemfm.m . . . 4 (𝜑𝑀 ∈ ℕ)
62, 4, 5rspcdva 2794 . . 3 (𝜑 → (𝐹𝑀) ∈ ℂ)
76abscld 10953 . 2 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
8 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
9 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
108, 9gt0ap0d 8391 . . . . . . . . . 10 (𝜑𝐴 # 0)
118, 10rerecclapd 8593 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
12 1red 7781 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
1311, 12resubcld 8143 . . . . . . . 8 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
14 cvgratnn.4 . . . . . . . . . 10 (𝜑𝐴 < 1)
158, 9elrpd 9481 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
1615reclt1d 9497 . . . . . . . . . 10 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1714, 16mpbid 146 . . . . . . . . 9 (𝜑 → 1 < (1 / 𝐴))
1812, 11posdifd 8294 . . . . . . . . 9 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1917, 18mpbid 146 . . . . . . . 8 (𝜑 → 0 < ((1 / 𝐴) − 1))
2013, 19elrpd 9481 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
2120rpreccld 9494 . . . . . 6 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
2221, 15rpdivcld 9501 . . . . 5 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
2322rpred 9483 . . . 4 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ)
24 fveq2 5421 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2524eleq1d 2208 . . . . . 6 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
26 1nn 8731 . . . . . . 7 1 ∈ ℕ
2726a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
2825, 4, 27rspcdva 2794 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℂ)
2928abscld 10953 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3023, 29remulcld 7796 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) ∈ ℝ)
3130, 5nndivred 8770 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) ∈ ℝ)
32 peano2re 7898 . . . . 5 ((abs‘(𝐹‘1)) ∈ ℝ → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3329, 32syl 14 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3423, 33remulcld 7796 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
3534, 5nndivred 8770 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
36 nnm1nn0 9018 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
375, 36syl 14 . . . . 5 (𝜑 → (𝑀 − 1) ∈ ℕ0)
388, 37reexpcld 10441 . . . 4 (𝜑 → (𝐴↑(𝑀 − 1)) ∈ ℝ)
3929, 38remulcld 7796 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ∈ ℝ)
40 cvgratnn.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
418, 14, 9, 3, 40, 5cvgratnnlemnexp 11293 . . 3 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))))
4223, 5nndivred 8770 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀) ∈ ℝ)
4328absge0d 10956 . . . . 5 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
448recnd 7794 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
455nnzd 9172 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
4644, 10, 45expm1apd 10434 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
475nnnn0d 9030 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
488, 47reexpcld 10441 . . . . . . . . 9 (𝜑 → (𝐴𝑀) ∈ ℝ)
4921rpred 9483 . . . . . . . . . 10 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ)
5049, 5nndivred 8770 . . . . . . . . 9 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) ∈ ℝ)
518, 14, 9, 5cvgratnnlembern 11292 . . . . . . . . 9 (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
5248, 50, 15, 51ltdiv1dd 9541 . . . . . . . 8 (𝜑 → ((𝐴𝑀) / 𝐴) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5346, 52eqbrtrd 3950 . . . . . . 7 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5449recnd 7794 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℂ)
555nncnd 8734 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
565nnap0d 8766 . . . . . . . 8 (𝜑𝑀 # 0)
5754, 55, 44, 56, 10divdiv32apd 8576 . . . . . . 7 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5853, 57breqtrd 3954 . . . . . 6 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5938, 42, 58ltled 7881 . . . . 5 (𝜑 → (𝐴↑(𝑀 − 1)) ≤ (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
6038, 42, 29, 43, 59lemul2ad 8698 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6129recnd 7794 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
6223recnd 7794 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℂ)
6361, 62mulcomd 7787 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))))
6463oveq1d 5789 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
6561, 62, 55, 56divassapd 8586 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6664, 65eqtr3d 2174 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6760, 66breqtrrd 3956 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
687, 39, 31, 41, 67letrd 7886 . 2 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
695nnrpd 9482 . . 3 (𝜑𝑀 ∈ ℝ+)
7029ltp1d 8688 . . . 4 (𝜑 → (abs‘(𝐹‘1)) < ((abs‘(𝐹‘1)) + 1))
7129, 33, 22, 70ltmul2dd 9540 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)))
7230, 34, 69, 71ltdiv1dd 9541 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
737, 31, 35, 68, 72lelttrd 7887 1 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  0cn0 8977  cexp 10292  abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  cvgratnnlemrate  11299
  Copyright terms: Public domain W3C validator