ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 GIF version

Theorem fldiv4p1lem1div2 9254
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 7636 . . . 4 1 ≤ 1
21a1i 9 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 oveq1 5546 . . . . . . 7 (𝑁 = 3 → (𝑁 / 4) = (3 / 4))
43fveq2d 5209 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
5 3lt4 8154 . . . . . . 7 3 < 4
6 3nn0 8256 . . . . . . . 8 3 ∈ ℕ0
7 4nn 8145 . . . . . . . 8 4 ∈ ℕ
8 divfl0 9245 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
96, 7, 8mp2an 410 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
105, 9mpbi 137 . . . . . 6 (⌊‘(3 / 4)) = 0
114, 10syl6eq 2104 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1211oveq1d 5554 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
13 0p1e1 8103 . . . 4 (0 + 1) = 1
1412, 13syl6eq 2104 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
15 oveq1 5546 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
16 3m1e2 8108 . . . . . 6 (3 − 1) = 2
1715, 16syl6eq 2104 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1817oveq1d 5554 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
19 2div2e1 8114 . . . 4 (2 / 2) = 1
2018, 19syl6eq 2104 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
212, 14, 203brtr4d 3821 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
22 uzp1 8601 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
23 2re 8059 . . . . . . 7 2 ∈ ℝ
2423leidi 7550 . . . . . 6 2 ≤ 2
2524a1i 9 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
26 oveq1 5546 . . . . . . . . 9 (𝑁 = 5 → (𝑁 / 4) = (5 / 4))
2726fveq2d 5209 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
28 df-5 8051 . . . . . . . . . . . 12 5 = (4 + 1)
2928oveq1i 5549 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
30 4cn 8067 . . . . . . . . . . . . 13 4 ∈ ℂ
31 ax-1cn 7034 . . . . . . . . . . . . 13 1 ∈ ℂ
32 4ap0 8088 . . . . . . . . . . . . 13 4 # 0
3330, 31, 30, 32divdirapi 7819 . . . . . . . . . . . 12 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3430, 32dividapi 7795 . . . . . . . . . . . . 13 (4 / 4) = 1
3534oveq1i 5549 . . . . . . . . . . . 12 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3633, 35eqtri 2076 . . . . . . . . . . 11 ((4 + 1) / 4) = (1 + (1 / 4))
3729, 36eqtri 2076 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3837fveq2i 5208 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
39 1re 7083 . . . . . . . . . . 11 1 ∈ ℝ
40 0le1 7549 . . . . . . . . . . 11 0 ≤ 1
41 4re 8066 . . . . . . . . . . 11 4 ∈ ℝ
42 4pos 8086 . . . . . . . . . . 11 0 < 4
43 divge0 7913 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4439, 40, 41, 42, 43mp4an 411 . . . . . . . . . 10 0 ≤ (1 / 4)
45 1lt4 8156 . . . . . . . . . . 11 1 < 4
46 recgt1 7937 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4741, 42, 46mp2an 410 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4845, 47mpbi 137 . . . . . . . . . 10 (1 / 4) < 1
49 1z 8327 . . . . . . . . . . 11 1 ∈ ℤ
50 znq 8655 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ)
5149, 7, 50mp2an 410 . . . . . . . . . . 11 (1 / 4) ∈ ℚ
52 flqbi2 9240 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℚ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
5349, 51, 52mp2an 410 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5444, 48, 53mpbir2an 860 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5538, 54eqtri 2076 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5627, 55syl6eq 2104 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5756oveq1d 5554 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
58 1p1e2 8105 . . . . . 6 (1 + 1) = 2
5957, 58syl6eq 2104 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
60 oveq1 5546 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
6130, 31, 28mvrraddi 7290 . . . . . . . 8 (5 − 1) = 4
6260, 61syl6eq 2104 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
6362oveq1d 5554 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
64 4d2e2 8142 . . . . . 6 (4 / 2) = 2
6563, 64syl6eq 2104 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6625, 59, 653brtr4d 3821 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
67 eluz2 8574 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
68 znq 8655 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ)
697, 68mpan2 409 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ)
70 flqle 9227 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7169, 70syl 14 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7271adantr 265 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7369flqcld 9226 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7473zred 8418 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
75 zre 8305 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76 id 19 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
7741a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 ∈ ℝ)
7832a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 # 0)
7976, 77, 78redivclapd 7882 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
8075, 79syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
8139a1i 9 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 1 ∈ ℝ)
8274, 80, 813jca 1095 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
8382adantr 265 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
84 leadd1 7498 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8583, 84syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8672, 85mpbid 139 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
87 div4p1lem1div2 8234 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8875, 87sylan 271 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
89 peano2re 7209 . . . . . . . . . . . 12 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
9074, 89syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
91 peano2re 7209 . . . . . . . . . . . 12 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
9280, 91syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 / 4) + 1) ∈ ℝ)
93 peano2rem 7340 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
9493rehalfcld 8227 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
9575, 94syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℝ)
9690, 92, 953jca 1095 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9796adantr 265 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
98 letr 7159 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9997, 98syl 14 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
10086, 88, 99mp2and 417 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
1011003adant1 933 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10267, 101sylbi 118 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
103 5p1e6 8119 . . . . . 6 (5 + 1) = 6
104103fveq2i 5208 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
105102, 104eleq2s 2148 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10666, 105jaoi 646 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10722, 106syl 14 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10821, 107jaoi 646 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639  w3a 896   = wceq 1259  wcel 1409   class class class wbr 3791  cfv 4929  (class class class)co 5539  cr 6945  0cc0 6946  1c1 6947   + caddc 6949   < clt 7118  cle 7119  cmin 7244   # cap 7645   / cdiv 7724  cn 7989  2c2 8039  3c3 8040  4c4 8041  5c5 8042  6c6 8043  0cn0 8238  cz 8301  cuz 8568  cq 8650  cfl 9219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059  ax-arch 7060
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-3 8049  df-4 8050  df-5 8051  df-6 8052  df-n0 8239  df-z 8302  df-uz 8569  df-q 8651  df-rp 8681  df-fl 9221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator