ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq GIF version

Theorem resqrexlemglsq 10794
Description: Lemma for resqrex 10798. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemglsq (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗,𝑘,𝑖,𝑦,𝑧   𝑥,𝐹,𝑘   𝑒,𝐿,𝑗,𝑘,𝑖,𝑦,𝑧   𝜑,𝑒,𝑖,𝑗,𝑘,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥)

Proof of Theorem resqrexlemglsq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 + 𝑓) = (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
21breq2d 3941 . . . . . 6 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) < (𝐿 + 𝑓) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
3 oveq2 5782 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝑓) = ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))
43breq2d 3941 . . . . . 6 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 < ((𝐹𝑘) + 𝑓) ↔ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
52, 4anbi12d 464 . . . . 5 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
65rexralbidv 2461 . . . 4 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
8 fveq2 5421 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
98breq1d 3939 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑒)))
108oveq1d 5789 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑘) + 𝑒))
1110breq2d 3941 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑒)))
129, 11anbi12d 464 . . . . . . . . . 10 (𝑖 = 𝑘 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒))))
1312cbvralv 2654 . . . . . . . . 9 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
1413rexbii 2442 . . . . . . . 8 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
1514ralbii 2441 . . . . . . 7 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
167, 15sylib 121 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
17 oveq2 5782 . . . . . . . . . 10 (𝑒 = 𝑓 → (𝐿 + 𝑒) = (𝐿 + 𝑓))
1817breq2d 3941 . . . . . . . . 9 (𝑒 = 𝑓 → ((𝐹𝑘) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑓)))
19 oveq2 5782 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑘) + 𝑓))
2019breq2d 3941 . . . . . . . . 9 (𝑒 = 𝑓 → (𝐿 < ((𝐹𝑘) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑓)))
2118, 20anbi12d 464 . . . . . . . 8 (𝑒 = 𝑓 → (((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
2221rexralbidv 2461 . . . . . . 7 (𝑒 = 𝑓 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
2322cbvralv 2654 . . . . . 6 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
2416, 23sylib 121 . . . . 5 (𝜑 → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
2524adantr 274 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
26 simpr 109 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
27 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
28 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
29 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
3027, 28, 29resqrexlemf 10779 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
3130adantr 274 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
32 1nn 8731 . . . . . . . . . 10 1 ∈ ℕ
3332a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
3431, 33ffvelrnd 5556 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
3534rpred 9483 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ)
36 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
3736adantr 274 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝐿 ∈ ℝ)
3835, 37readdcld 7795 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ)
3934rpgt0d 9486 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 < (𝐹‘1))
4027, 28, 29, 36, 7resqrexlemgt0 10792 . . . . . . . 8 (𝜑 → 0 ≤ 𝐿)
4140adantr 274 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 ≤ 𝐿)
42 addgtge0 8212 . . . . . . 7 ((((𝐹‘1) ∈ ℝ ∧ 𝐿 ∈ ℝ) ∧ (0 < (𝐹‘1) ∧ 0 ≤ 𝐿)) → 0 < ((𝐹‘1) + 𝐿))
4335, 37, 39, 41, 42syl22anc 1217 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 0 < ((𝐹‘1) + 𝐿))
4438, 43elrpd 9481 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
4526, 44rpdivcld 9501 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
466, 25, 45rspcdva 2794 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
47 simpllr 523 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑗 ∈ ℕ)
48 simplr 519 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ (ℤ𝑗))
49 eluznn 9394 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
5047, 48, 49syl2anc 408 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ ℕ)
5131ad3antrrr 483 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐹:ℕ⟶ℝ+)
5251, 50ffvelrnd 5556 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ+)
53 2z 9082 . . . . . . . . . . 11 2 ∈ ℤ
5453a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 2 ∈ ℤ)
5552, 54rpexpcld 10448 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ+)
56 fveq2 5421 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
5756oveq1d 5789 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
58 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
5957, 58fvmptg 5497 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6050, 55, 59syl2anc 408 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6152rpred 9483 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ)
6261recnd 7794 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℂ)
6337ad3antrrr 483 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℝ)
6463recnd 7794 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℂ)
65 subsq 10399 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℂ ∧ 𝐿 ∈ ℂ) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6662, 64, 65syl2anc 408 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6761, 63readdcld 7795 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ∈ ℝ)
6861, 63resubcld 8143 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) ∈ ℝ)
6967, 68remulcld 7796 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
7038ad3antrrr 483 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ)
7170, 68remulcld 7796 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
7226ad3antrrr 483 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ+)
7372rpred 9483 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ)
7428ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐴 ∈ ℝ)
7529ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐴)
767ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
7727, 74, 75, 63, 76, 50resqrexlemoverl 10793 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ≤ (𝐹𝑘))
7861, 63subge0d 8297 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (0 ≤ ((𝐹𝑘) − 𝐿) ↔ 𝐿 ≤ (𝐹𝑘)))
7977, 78mpbird 166 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ ((𝐹𝑘) − 𝐿))
80 fveq2 5421 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8180oveq1d 5789 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿))
82 eqle 7855 . . . . . . . . . . . . . 14 ((((𝐹𝑘) + 𝐿) ∈ ℝ ∧ ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8367, 81, 82syl2an 287 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 𝑘 = 1) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8461adantr 274 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ∈ ℝ)
8535ad4antr 485 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹‘1) ∈ ℝ)
8663adantr 274 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐿 ∈ ℝ)
8728ad5antr 487 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐴 ∈ ℝ)
8829ad5antr 487 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 0 ≤ 𝐴)
8932a1i 9 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 ∈ ℕ)
9050adantr 274 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝑘 ∈ ℕ)
91 simpr 109 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 < 𝑘)
9227, 87, 88, 89, 90, 91resqrexlemdecn 10784 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) < (𝐹‘1))
9384, 85, 92ltled 7881 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ≤ (𝐹‘1))
9484, 85, 86, 93leadd1dd 8321 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
95 nn1gt1 8754 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 = 1 ∨ 1 < 𝑘))
9650, 95syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑘 = 1 ∨ 1 < 𝑘))
9783, 94, 96mpjaodan 787 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
9867, 70, 68, 79, 97lemul1ad 8697 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ≤ (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)))
99 simprl 520 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
10045ad3antrrr 483 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
101100rpred 9483 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ)
10261, 63, 101ltsubadd2d 8305 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
10399, 102mpbird 166 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)))
10444ad3antrrr 483 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
10568, 73, 104ltmuldiv2d 9532 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒 ↔ ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿))))
106103, 105mpbird 166 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10769, 71, 73, 98, 106lelttrd 7887 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10866, 107eqbrtrd 3950 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒)
10961resqcld 10450 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ)
11063resqcld 10450 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ∈ ℝ)
111109, 110, 73ltsubadd2d 8305 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒 ↔ ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒)))
112108, 111mpbid 146 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒))
11360, 112eqbrtrd 3950 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐿↑2) + 𝑒))
11460, 109eqeltrd 2216 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) ∈ ℝ)
115114, 73readdcld 7795 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
11641ad3antrrr 483 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐿)
117 le2sq2 10368 . . . . . . . . . 10 (((𝐿 ∈ ℝ ∧ 0 ≤ 𝐿) ∧ ((𝐹𝑘) ∈ ℝ ∧ 𝐿 ≤ (𝐹𝑘))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
11863, 116, 61, 77, 117syl22anc 1217 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
119118, 60breqtrrd 3956 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ (𝐺𝑘))
120114, 72ltaddrpd 9517 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
121110, 114, 115, 119, 120lelttrd 7887 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) < ((𝐺𝑘) + 𝑒))
122113, 121jca 304 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
123122ex 114 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
124123ralimdva 2499 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
125124reximdva 2534 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
12646, 125mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
127126ralrimiva 2505 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {csn 3527   class class class wbr 3929  cmpt 3989   × cxp 4537  wf 5119  cfv 5123  (class class class)co 5774  cmpo 5776  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  2c2 8771  cz 9054  cuz 9326  +crp 9441  seqcseq 10218  cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  resqrexlemsqa  10796
  Copyright terms: Public domain W3C validator