MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1 Structured version   Visualization version   GIF version

Theorem ackbij1 9662
Description: The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1 𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem17 9660 . 2 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
3 f1f 6577 . . . 4 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → 𝐹:(𝒫 ω ∩ Fin)⟶ω)
4 frn 6522 . . . 4 (𝐹:(𝒫 ω ∩ Fin)⟶ω → ran 𝐹 ⊆ ω)
52, 3, 4mp2b 10 . . 3 ran 𝐹 ⊆ ω
6 eleq1 2902 . . . . 5 (𝑏 = ∅ → (𝑏 ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
7 eleq1 2902 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ran 𝐹𝑎 ∈ ran 𝐹))
8 eleq1 2902 . . . . 5 (𝑏 = suc 𝑎 → (𝑏 ∈ ran 𝐹 ↔ suc 𝑎 ∈ ran 𝐹))
9 peano1 7603 . . . . . . . 8 ∅ ∈ ω
10 ackbij1lem3 9646 . . . . . . . 8 (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin))
119, 10ax-mp 5 . . . . . . 7 ∅ ∈ (𝒫 ω ∩ Fin)
121ackbij1lem13 9656 . . . . . . 7 (𝐹‘∅) = ∅
13 fveqeq2 6681 . . . . . . . 8 (𝑎 = ∅ → ((𝐹𝑎) = ∅ ↔ (𝐹‘∅) = ∅))
1413rspcev 3625 . . . . . . 7 ((∅ ∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘∅) = ∅) → ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅)
1511, 12, 14mp2an 690 . . . . . 6 𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅
16 f1fn 6578 . . . . . . . 8 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → 𝐹 Fn (𝒫 ω ∩ Fin))
172, 16ax-mp 5 . . . . . . 7 𝐹 Fn (𝒫 ω ∩ Fin)
18 fvelrnb 6728 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (∅ ∈ ran 𝐹 ↔ ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅))
1917, 18ax-mp 5 . . . . . 6 (∅ ∈ ran 𝐹 ↔ ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅)
2015, 19mpbir 233 . . . . 5 ∅ ∈ ran 𝐹
211ackbij1lem18 9661 . . . . . . . . 9 (𝑐 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐))
2221adantl 484 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩ Fin)) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐))
23 suceq 6258 . . . . . . . . . 10 ((𝐹𝑐) = 𝑎 → suc (𝐹𝑐) = suc 𝑎)
2423eqeq2d 2834 . . . . . . . . 9 ((𝐹𝑐) = 𝑎 → ((𝐹𝑏) = suc (𝐹𝑐) ↔ (𝐹𝑏) = suc 𝑎))
2524rexbidv 3299 . . . . . . . 8 ((𝐹𝑐) = 𝑎 → (∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐) ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
2622, 25syl5ibcom 247 . . . . . . 7 ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
2726rexlimdva 3286 . . . . . 6 (𝑎 ∈ ω → (∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
28 fvelrnb 6728 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (𝑎 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎))
2917, 28ax-mp 5 . . . . . 6 (𝑎 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎)
30 fvelrnb 6728 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (suc 𝑎 ∈ ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
3117, 30ax-mp 5 . . . . . 6 (suc 𝑎 ∈ ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎)
3227, 29, 313imtr4g 298 . . . . 5 (𝑎 ∈ ω → (𝑎 ∈ ran 𝐹 → suc 𝑎 ∈ ran 𝐹))
336, 7, 8, 7, 20, 32finds 7610 . . . 4 (𝑎 ∈ ω → 𝑎 ∈ ran 𝐹)
3433ssriv 3973 . . 3 ω ⊆ ran 𝐹
355, 34eqssi 3985 . 2 ran 𝐹 = ω
36 dff1o5 6626 . 2 (𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω ↔ (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ ran 𝐹 = ω))
372, 35, 36mpbir2an 709 1 𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   ciun 4921  cmpt 5148   × cxp 5555  ran crn 5558  suc csuc 6195   Fn wfn 6352  wf 6353  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357  ωcom 7582  Fincfn 8511  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370
This theorem is referenced by:  fictb  9669  ackbijnn  15185
  Copyright terms: Public domain W3C validator