MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn2 Structured version   Visualization version   GIF version

Theorem acsfn2 16371
Description: Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑉   𝑋,𝑎,𝑏,𝑐   𝐸,𝑎
Allowed substitution hints:   𝐸(𝑏,𝑐)

Proof of Theorem acsfn2
StepHypRef Expression
1 elpwi 4201 . . . . 5 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 3701 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎)))
3 ralss 3701 . . . . . . . 8 (𝑎𝑋 → (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ ∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎))))
4 r19.21v 2989 . . . . . . . 8 (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎))
5 impexp 461 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ (𝑐𝑎 → (𝑏𝑎𝐸𝑎)))
6 vex 3234 . . . . . . . . . . . 12 𝑐 ∈ V
7 vex 3234 . . . . . . . . . . . 12 𝑏 ∈ V
86, 7prss 4383 . . . . . . . . . . 11 ((𝑐𝑎𝑏𝑎) ↔ {𝑐, 𝑏} ⊆ 𝑎)
98imbi1i 338 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
105, 9bitr3i 266 . . . . . . . . 9 ((𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
1110ralbii 3009 . . . . . . . 8 (∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
123, 4, 113bitr3g 302 . . . . . . 7 (𝑎𝑋 → ((𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1312ralbidv 3015 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
142, 13bitrd 268 . . . . 5 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
151, 14syl 17 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1615rabbiia 3215 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
17 riinrab 4628 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
1816, 17eqtr4i 2676 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)})
19 mreacs 16366 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
2019adantr 480 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
21 riinrab 4628 . . . . . . 7 (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
2219ad2antrr 762 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
23 simpll 805 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝑋𝑉)
24 simprr 811 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝐸𝑋)
25 prssi 4385 . . . . . . . . . . . . . 14 ((𝑐𝑋𝑏𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2625ancoms 468 . . . . . . . . . . . . 13 ((𝑏𝑋𝑐𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2726ad2ant2lr 799 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ⊆ 𝑋)
28 prfi 8276 . . . . . . . . . . . . 13 {𝑐, 𝑏} ∈ Fin
2928a1i 11 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ∈ Fin)
30 acsfn 16367 . . . . . . . . . . . 12 (((𝑋𝑉𝐸𝑋) ∧ ({𝑐, 𝑏} ⊆ 𝑋 ∧ {𝑐, 𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3123, 24, 27, 29, 30syl22anc 1367 . . . . . . . . . . 11 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3231expr 642 . . . . . . . . . 10 (((𝑋𝑉𝑏𝑋) ∧ 𝑐𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3332ralimdva 2991 . . . . . . . . 9 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3433imp 444 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
35 mreriincl 16305 . . . . . . . 8 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3622, 34, 35syl2anc 694 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3721, 36syl5eqelr 2735 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3837ex 449 . . . . 5 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3938ralimdva 2991 . . . 4 (𝑋𝑉 → (∀𝑏𝑋𝑐𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
4039imp 444 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
41 mreriincl 16305 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4220, 40, 41syl2anc 694 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4318, 42syl5eqel 2734 1 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  wral 2941  {crab 2945  cin 3606  wss 3607  𝒫 cpw 4191  {cpr 4212   ciin 4553  cfv 5926  Fincfn 7997  Moorecmre 16289  ACScacs 16292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-mre 16293  df-mrc 16294  df-acs 16296
This theorem is referenced by:  submacs  17412  submgmacs  42129
  Copyright terms: Public domain W3C validator