MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreacs Structured version   Visualization version   GIF version

Theorem mreacs 16931
Description: Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreacs (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))

Proof of Theorem mreacs
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . 3 (𝑥 = 𝑋 → (ACS‘𝑥) = (ACS‘𝑋))
2 pweq 4557 . . . 4 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
32fveq2d 6676 . . 3 (𝑥 = 𝑋 → (Moore‘𝒫 𝑥) = (Moore‘𝒫 𝑋))
41, 3eleq12d 2909 . 2 (𝑥 = 𝑋 → ((ACS‘𝑥) ∈ (Moore‘𝒫 𝑥) ↔ (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)))
5 acsmre 16925 . . . . . . 7 (𝑎 ∈ (ACS‘𝑥) → 𝑎 ∈ (Moore‘𝑥))
6 mresspw 16865 . . . . . . . 8 (𝑎 ∈ (Moore‘𝑥) → 𝑎 ⊆ 𝒫 𝑥)
75, 6syl 17 . . . . . . 7 (𝑎 ∈ (ACS‘𝑥) → 𝑎 ⊆ 𝒫 𝑥)
85, 7elpwd 4549 . . . . . 6 (𝑎 ∈ (ACS‘𝑥) → 𝑎 ∈ 𝒫 𝒫 𝑥)
98ssriv 3973 . . . . 5 (ACS‘𝑥) ⊆ 𝒫 𝒫 𝑥
109a1i 11 . . . 4 (⊤ → (ACS‘𝑥) ⊆ 𝒫 𝒫 𝑥)
11 vex 3499 . . . . . . . 8 𝑥 ∈ V
12 mremre 16877 . . . . . . . 8 (𝑥 ∈ V → (Moore‘𝑥) ∈ (Moore‘𝒫 𝑥))
1311, 12mp1i 13 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → (Moore‘𝑥) ∈ (Moore‘𝒫 𝑥))
145ssriv 3973 . . . . . . . 8 (ACS‘𝑥) ⊆ (Moore‘𝑥)
15 sstr 3977 . . . . . . . 8 ((𝑎 ⊆ (ACS‘𝑥) ∧ (ACS‘𝑥) ⊆ (Moore‘𝑥)) → 𝑎 ⊆ (Moore‘𝑥))
1614, 15mpan2 689 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → 𝑎 ⊆ (Moore‘𝑥))
17 mrerintcl 16870 . . . . . . 7 (((Moore‘𝑥) ∈ (Moore‘𝒫 𝑥) ∧ 𝑎 ⊆ (Moore‘𝑥)) → (𝒫 𝑥 𝑎) ∈ (Moore‘𝑥))
1813, 16, 17syl2anc 586 . . . . . 6 (𝑎 ⊆ (ACS‘𝑥) → (𝒫 𝑥 𝑎) ∈ (Moore‘𝑥))
19 ssel2 3964 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → 𝑑 ∈ (ACS‘𝑥))
2019acsmred 16929 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → 𝑑 ∈ (Moore‘𝑥))
21 eqid 2823 . . . . . . . . . . . . . . 15 (mrCls‘𝑑) = (mrCls‘𝑑)
2220, 21mrcssvd 16896 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2322ralrimiva 3184 . . . . . . . . . . . . 13 (𝑎 ⊆ (ACS‘𝑥) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2423adantr 483 . . . . . . . . . . . 12 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑐 ∈ 𝒫 𝑥) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
25 iunss 4971 . . . . . . . . . . . 12 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥 ↔ ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2624, 25sylibr 236 . . . . . . . . . . 11 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑐 ∈ 𝒫 𝑥) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2711elpw2 5250 . . . . . . . . . . 11 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2826, 27sylibr 236 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑐 ∈ 𝒫 𝑥) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ∈ 𝒫 𝑥)
2928fmpttd 6881 . . . . . . . . 9 (𝑎 ⊆ (ACS‘𝑥) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥)
30 fssxp 6536 . . . . . . . . 9 ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥 → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ⊆ (𝒫 𝑥 × 𝒫 𝑥))
3129, 30syl 17 . . . . . . . 8 (𝑎 ⊆ (ACS‘𝑥) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ⊆ (𝒫 𝑥 × 𝒫 𝑥))
32 vpwex 5280 . . . . . . . . 9 𝒫 𝑥 ∈ V
3332, 32xpex 7478 . . . . . . . 8 (𝒫 𝑥 × 𝒫 𝑥) ∈ V
34 ssexg 5229 . . . . . . . 8 (((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ⊆ (𝒫 𝑥 × 𝒫 𝑥) ∧ (𝒫 𝑥 × 𝒫 𝑥) ∈ V) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ∈ V)
3531, 33, 34sylancl 588 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ∈ V)
3619adantlr 713 . . . . . . . . . . . . 13 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑑𝑎) → 𝑑 ∈ (ACS‘𝑥))
37 elpwi 4550 . . . . . . . . . . . . . 14 (𝑏 ∈ 𝒫 𝑥𝑏𝑥)
3837ad2antlr 725 . . . . . . . . . . . . 13 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑑𝑎) → 𝑏𝑥)
3921acsfiel2 16928 . . . . . . . . . . . . 13 ((𝑑 ∈ (ACS‘𝑥) ∧ 𝑏𝑥) → (𝑏𝑑 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
4036, 38, 39syl2anc 586 . . . . . . . . . . . 12 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑑𝑎) → (𝑏𝑑 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
4140ralbidva 3198 . . . . . . . . . . 11 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (∀𝑑𝑎 𝑏𝑑 ↔ ∀𝑑𝑎𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
42 iunss 4971 . . . . . . . . . . . . 13 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
4342ralbii 3167 . . . . . . . . . . . 12 (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
44 ralcom 3356 . . . . . . . . . . . 12 (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑑𝑎𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
4543, 44bitri 277 . . . . . . . . . . 11 (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑑𝑎𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
4641, 45syl6bbr 291 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (∀𝑑𝑎 𝑏𝑑 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
47 elrint2 4920 . . . . . . . . . . 11 (𝑏 ∈ 𝒫 𝑥 → (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ∀𝑑𝑎 𝑏𝑑))
4847adantl 484 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ∀𝑑𝑎 𝑏𝑑))
49 funmpt 6395 . . . . . . . . . . . . 13 Fun (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))
50 funiunfv 7009 . . . . . . . . . . . . 13 (Fun (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)))
5149, 50ax-mp 5 . . . . . . . . . . . 12 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin))
5251sseq1i 3997 . . . . . . . . . . 11 ( 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)
53 iunss 4971 . . . . . . . . . . . 12 ( 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏)
54 eqid 2823 . . . . . . . . . . . . . . 15 (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))
55 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑒 → ((mrCls‘𝑑)‘𝑐) = ((mrCls‘𝑑)‘𝑒))
5655iuneq2d 4950 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) = 𝑑𝑎 ((mrCls‘𝑑)‘𝑒))
57 inss1 4207 . . . . . . . . . . . . . . . . 17 (𝒫 𝑏 ∩ Fin) ⊆ 𝒫 𝑏
5837sspwd 4556 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ 𝒫 𝑥 → 𝒫 𝑏 ⊆ 𝒫 𝑥)
5958adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → 𝒫 𝑏 ⊆ 𝒫 𝑥)
6057, 59sstrid 3980 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (𝒫 𝑏 ∩ Fin) ⊆ 𝒫 𝑥)
6160sselda 3969 . . . . . . . . . . . . . . 15 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → 𝑒 ∈ 𝒫 𝑥)
6220, 21mrcssvd 16896 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
6362ralrimiva 3184 . . . . . . . . . . . . . . . . . 18 (𝑎 ⊆ (ACS‘𝑥) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
6463ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
65 iunss 4971 . . . . . . . . . . . . . . . . 17 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥 ↔ ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
6664, 65sylibr 236 . . . . . . . . . . . . . . . 16 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
67 ssexg 5229 . . . . . . . . . . . . . . . 16 (( 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥𝑥 ∈ V) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ∈ V)
6866, 11, 67sylancl 588 . . . . . . . . . . . . . . 15 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ∈ V)
6954, 56, 61, 68fvmptd3 6793 . . . . . . . . . . . . . 14 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) = 𝑑𝑎 ((mrCls‘𝑑)‘𝑒))
7069sseq1d 4000 . . . . . . . . . . . . 13 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → (((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7170ralbidva 3198 . . . . . . . . . . . 12 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7253, 71syl5bb 285 . . . . . . . . . . 11 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → ( 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7352, 72syl5bbr 287 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → ( ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7446, 48, 733bitr4d 313 . . . . . . . . 9 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))
7574ralrimiva 3184 . . . . . . . 8 (𝑎 ⊆ (ACS‘𝑥) → ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))
7629, 75jca 514 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
77 feq1 6497 . . . . . . . 8 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (𝑓:𝒫 𝑥⟶𝒫 𝑥 ↔ (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥))
78 imaeq1 5926 . . . . . . . . . . . 12 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (𝑓 “ (𝒫 𝑏 ∩ Fin)) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)))
7978unieqd 4854 . . . . . . . . . . 11 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (𝑓 “ (𝒫 𝑏 ∩ Fin)) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)))
8079sseq1d 4000 . . . . . . . . . 10 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → ( (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏 ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))
8180bibi2d 345 . . . . . . . . 9 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → ((𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏) ↔ (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
8281ralbidv 3199 . . . . . . . 8 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏) ↔ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
8377, 82anbi12d 632 . . . . . . 7 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → ((𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))))
8435, 76, 83spcedv 3601 . . . . . 6 (𝑎 ⊆ (ACS‘𝑥) → ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
85 isacs 16924 . . . . . 6 ((𝒫 𝑥 𝑎) ∈ (ACS‘𝑥) ↔ ((𝒫 𝑥 𝑎) ∈ (Moore‘𝑥) ∧ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))))
8618, 84, 85sylanbrc 585 . . . . 5 (𝑎 ⊆ (ACS‘𝑥) → (𝒫 𝑥 𝑎) ∈ (ACS‘𝑥))
8786adantl 484 . . . 4 ((⊤ ∧ 𝑎 ⊆ (ACS‘𝑥)) → (𝒫 𝑥 𝑎) ∈ (ACS‘𝑥))
8810, 87ismred2 16876 . . 3 (⊤ → (ACS‘𝑥) ∈ (Moore‘𝒫 𝑥))
8988mptru 1544 . 2 (ACS‘𝑥) ∈ (Moore‘𝒫 𝑥)
904, 89vtoclg 3569 1 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wtru 1538  wex 1780  wcel 2114  wral 3140  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840   cint 4878   ciun 4921  cmpt 5148   × cxp 5555  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  Fincfn 8511  Moorecmre 16855  mrClscmrc 16856  ACScacs 16858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-mre 16859  df-mrc 16860  df-acs 16862
This theorem is referenced by:  acsfn1  16934  acsfn1c  16935  acsfn2  16936  submacs  17993  subgacs  18315  nsgacs  18316  acsfn1p  19580  subrgacs  19581  sdrgacs  19582  lssacs  19741
  Copyright terms: Public domain W3C validator