Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arglem1N Structured version   Visualization version   GIF version

Theorem arglem1N 37341
Description: Lemma for Desargues's law. Theorem 13.3 of [Crawley] p. 110, third and fourth lines from bottom. In these lemmas, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑈, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 represent Crawley's a0, a1, a2, b0, b1, b2, c, z0, z1, z2, and p respectively. (Contributed by NM, 28-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
arglem1.j = (join‘𝐾)
arglem1.m = (meet‘𝐾)
arglem1.a 𝐴 = (Atoms‘𝐾)
arglem1.f 𝐹 = ((𝑃 𝑄) (𝑆 𝑇))
arglem1.g 𝐺 = ((𝑃 𝑆) (𝑄 𝑇))
Assertion
Ref Expression
arglem1N ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐹𝐴)

Proof of Theorem arglem1N
StepHypRef Expression
1 arglem1.f . 2 𝐹 = ((𝑃 𝑄) (𝑆 𝑇))
2 simpl11 1244 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐾 ∈ HL)
32hllatd 36515 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐾 ∈ Lat)
4 simpl12 1245 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝐴)
5 eqid 2821 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 arglem1.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atbase 36440 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
84, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃 ∈ (Base‘𝐾))
9 simpl13 1246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄𝐴)
105, 6atbase 36440 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
119, 10syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄 ∈ (Base‘𝐾))
12 simpl21 1247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆𝐴)
135, 6atbase 36440 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆 ∈ (Base‘𝐾))
15 simpl22 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑇𝐴)
165, 6atbase 36440 . . . . . 6 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑇 ∈ (Base‘𝐾))
18 arglem1.j . . . . . 6 = (join‘𝐾)
195, 18latj4 17711 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
203, 8, 11, 14, 17, 19syl122anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑆) (𝑄 𝑇)))
21 arglem1.g . . . . . 6 𝐺 = ((𝑃 𝑆) (𝑄 𝑇))
22 simpr 487 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐺𝐴)
2321, 22eqeltrrid 2918 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
24 simpl31 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝑆)
25 eqid 2821 . . . . . . . 8 (LLines‘𝐾) = (LLines‘𝐾)
2618, 6, 25llni2 36663 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ 𝑃𝑆) → (𝑃 𝑆) ∈ (LLines‘𝐾))
272, 4, 12, 24, 26syl31anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑃 𝑆) ∈ (LLines‘𝐾))
28 simpl32 1251 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑄𝑇)
2918, 6, 25llni2 36663 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) ∧ 𝑄𝑇) → (𝑄 𝑇) ∈ (LLines‘𝐾))
302, 9, 15, 28, 29syl31anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑄 𝑇) ∈ (LLines‘𝐾))
31 arglem1.m . . . . . . 7 = (meet‘𝐾)
32 eqid 2821 . . . . . . 7 (LPlanes‘𝐾) = (LPlanes‘𝐾)
3318, 31, 6, 25, 322llnmj 36711 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 𝑆) ∈ (LLines‘𝐾) ∧ (𝑄 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾)))
342, 27, 30, 33syl3anc 1367 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾)))
3523, 34mpbid 234 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (LPlanes‘𝐾))
3620, 35eqeltrd 2913 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾))
37 simpl23 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑃𝑄)
3818, 6, 25llni2 36663 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
392, 4, 9, 37, 38syl31anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑃 𝑄) ∈ (LLines‘𝐾))
40 simpl33 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝑆𝑇)
4118, 6, 25llni2 36663 . . . . 5 (((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 𝑇) ∈ (LLines‘𝐾))
422, 12, 15, 40, 41syl31anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (𝑆 𝑇) ∈ (LLines‘𝐾))
4318, 31, 6, 25, 322llnmj 36711 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑆 𝑇) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾)))
442, 39, 42, 43syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → (((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑆 𝑇)) ∈ (LPlanes‘𝐾)))
4536, 44mpbird 259 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ 𝐴)
461, 45eqeltrid 2917 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴𝑃𝑄) ∧ (𝑃𝑆𝑄𝑇𝑆𝑇)) ∧ 𝐺𝐴) → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cfv 6355  (class class class)co 7156  Basecbs 16483  joincjn 17554  meetcmee 17555  Latclat 17655  Atomscatm 36414  HLchlt 36501  LLinesclln 36642  LPlanesclpl 36643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator