Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1417 Structured version   Visualization version   GIF version

Theorem bnj1417 30197
Description: Technical lemma for bnj60 30218. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1417.1 (𝜑𝑅 FrSe 𝐴)
bnj1417.2 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
bnj1417.3 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
bnj1417.4 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
bnj1417.5 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1417 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem bnj1417
StepHypRef Expression
1 bnj1417.1 . . . 4 (𝜑𝑅 FrSe 𝐴)
21biimpi 204 . . 3 (𝜑𝑅 FrSe 𝐴)
3 bnj1417.4 . . . . . 6 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
4 bnj1418 30196 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝑅𝑥)
54adantl 480 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑥𝑅𝑥)
63, 2bnj835 29917 . . . . . . . . . . . 12 (𝜃𝑅 FrSe 𝐴)
7 df-bnj15 29846 . . . . . . . . . . . . 13 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
87simplbi 474 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
96, 8syl 17 . . . . . . . . . . 11 (𝜃𝑅 Fr 𝐴)
10 bnj213 30040 . . . . . . . . . . . 12 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐴
1110sseli 3563 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝐴)
12 frirr 5005 . . . . . . . . . . 11 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
139, 11, 12syl2an 492 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥𝑅𝑥)
145, 13pm2.65da 597 . . . . . . . . 9 (𝜃 → ¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅))
15 nfv 1829 . . . . . . . . . . . . . 14 𝑦𝜑
16 nfv 1829 . . . . . . . . . . . . . 14 𝑦 𝑥𝐴
17 bnj1417.3 . . . . . . . . . . . . . . . 16 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
1817bnj1095 29940 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑦𝜒)
1918nf5i 2010 . . . . . . . . . . . . . 14 𝑦𝜒
2015, 16, 19nf3an 1818 . . . . . . . . . . . . 13 𝑦(𝜑𝑥𝐴𝜒)
213, 20nfxfr 1770 . . . . . . . . . . . 12 𝑦𝜃
226ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
23 simplr 787 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ pred(𝑥, 𝐴, 𝑅))
2410, 23sseldi 3565 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝐴)
25 simpr 475 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
26 bnj1125 30148 . . . . . . . . . . . . . . . 16 ((𝑅 FrSe 𝐴𝑦𝐴𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
2722, 24, 25, 26syl3anc 1317 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
28 bnj1147 30150 . . . . . . . . . . . . . . . . . 18 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2928, 25sseldi 3565 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥𝐴)
30 bnj906 30088 . . . . . . . . . . . . . . . . 17 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3122, 29, 30syl2anc 690 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3231, 23sseldd 3568 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅))
3327, 32sseldd 3568 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
3417biimpi 204 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
353, 34bnj837 29919 . . . . . . . . . . . . . . . . 17 (𝜃 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
3635ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
37 bnj1418 30196 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
3837ad2antlr 758 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝑅𝑥)
39 rsp 2912 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓) → (𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓)))
4036, 24, 38, 39syl3c 63 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → [𝑦 / 𝑥]𝜓)
41 vex 3175 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
42 bnj1417.2 . . . . . . . . . . . . . . . . 17 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
43 eleq1 2675 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅)))
44 bnj1318 30181 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
4544eleq2d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑦 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4643, 45bitrd 266 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4746notbid 306 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4842, 47syl5bb 270 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4941, 48sbcie 3436 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5040, 49sylib 206 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5133, 50pm2.65da 597 . . . . . . . . . . . . 13 ((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5251ex 448 . . . . . . . . . . . 12 (𝜃 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)))
5321, 52ralrimi 2939 . . . . . . . . . . 11 (𝜃 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
54 ralnex 2974 . . . . . . . . . . 11 (∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅) ↔ ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5553, 54sylib 206 . . . . . . . . . 10 (𝜃 → ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
56 eliun 4454 . . . . . . . . . 10 (𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5755, 56sylnibr 317 . . . . . . . . 9 (𝜃 → ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
58 ioran 509 . . . . . . . . 9 (¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∧ ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5914, 57, 58sylanbrc 694 . . . . . . . 8 (𝜃 → ¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
603simp2bi 1069 . . . . . . . . . . 11 (𝜃𝑥𝐴)
61 bnj1417.5 . . . . . . . . . . . 12 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
6261bnj1414 30193 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
636, 60, 62syl2anc 690 . . . . . . . . . 10 (𝜃 → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
6463eleq2d 2672 . . . . . . . . 9 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑥𝐵))
6561bnj1138 29947 . . . . . . . . 9 (𝑥𝐵 ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
6664, 65syl6bb 274 . . . . . . . 8 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))))
6759, 66mtbird 313 . . . . . . 7 (𝜃 → ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
6867, 42sylibr 222 . . . . . 6 (𝜃𝜓)
693, 68sylbir 223 . . . . 5 ((𝜑𝑥𝐴𝜒) → 𝜓)
70693exp 1255 . . . 4 (𝜑 → (𝑥𝐴 → (𝜒𝜓)))
7170ralrimiv 2947 . . 3 (𝜑 → ∀𝑥𝐴 (𝜒𝜓))
7217bnj1204 30168 . . 3 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜒𝜓)) → ∀𝑥𝐴 𝜓)
732, 71, 72syl2anc 690 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
7442ralbii 2962 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
7573, 74sylib 206 1 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  wrex 2896  [wsbc 3401  cun 3537  wss 3539   ciun 4449   class class class wbr 4577   Fr wfr 4984   predc-bnj14 29841   Se w-bnj13 29843   FrSe w-bnj15 29845   trClc-bnj18 29847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-reg 8358  ax-inf2 8399
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-om 6936  df-1o 7425  df-bnj17 29840  df-bnj14 29842  df-bnj13 29844  df-bnj15 29846  df-bnj18 29848  df-bnj19 29850
This theorem is referenced by:  bnj1421  30198
  Copyright terms: Public domain W3C validator