Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab2a Structured version   Visualization version   GIF version

Theorem brab2a 5351
 Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
brab2a.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brab2a.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}
Assertion
Ref Expression
brab2a (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab2a
StepHypRef Expression
1 brab2a.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}
2 opabssxp 5350 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ⊆ (𝐶 × 𝐷)
31, 2eqsstri 3776 . . 3 𝑅 ⊆ (𝐶 × 𝐷)
43brel 5325 . 2 (𝐴𝑅𝐵 → (𝐴𝐶𝐵𝐷))
5 df-br 4805 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
61eleq2i 2831 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
75, 6bitri 264 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
8 brab2a.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
98opelopab2a 5140 . . 3 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
107, 9syl5bb 272 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜓))
114, 10biadan2 677 1 (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ⟨cop 4327   class class class wbr 4804  {copab 4864   × cxp 5264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272 This theorem is referenced by:  fnse  7462  ltxrlt  10300  ltxr  12142  issect  16614  gaorb  17940  ispgp  18207  efgcpbllema  18367  lmbr  21264  isphtpc  22994  vitalilem1  23576  vitalilem2  23577  vitalilem3  23578  iscgrg  25606  ishlg  25696  iscgra  25900  isinag  25928  isleag  25932  filnetlem1  32679
 Copyright terms: Public domain W3C validator