Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragendifcl Structured version   Visualization version   GIF version

Theorem caragendifcl 41252
 Description: The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragendifcl.o (𝜑𝑂 ∈ OutMeas)
caragendifcl.s 𝑆 = (CaraGen‘𝑂)
caragendifcl.e (𝜑𝐸𝑆)
Assertion
Ref Expression
caragendifcl (𝜑 → ( 𝑆𝐸) ∈ 𝑆)

Proof of Theorem caragendifcl
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caragendifcl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2760 . 2 dom 𝑂 = dom 𝑂
3 caragendifcl.s . 2 𝑆 = (CaraGen‘𝑂)
43caragenss 41242 . . . . . 6 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
51, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ dom 𝑂)
65unissd 4614 . . . 4 (𝜑 𝑆 dom 𝑂)
76ssdifssd 3891 . . 3 (𝜑 → ( 𝑆𝐸) ⊆ dom 𝑂)
8 fvex 6363 . . . . . . . 8 (CaraGen‘𝑂) ∈ V
93, 8eqeltri 2835 . . . . . . 7 𝑆 ∈ V
109uniex 7119 . . . . . 6 𝑆 ∈ V
11 difexg 4960 . . . . . 6 ( 𝑆 ∈ V → ( 𝑆𝐸) ∈ V)
1210, 11ax-mp 5 . . . . 5 ( 𝑆𝐸) ∈ V
1312a1i 11 . . . 4 (𝜑 → ( 𝑆𝐸) ∈ V)
14 elpwg 4310 . . . 4 (( 𝑆𝐸) ∈ V → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
1513, 14syl 17 . . 3 (𝜑 → (( 𝑆𝐸) ∈ 𝒫 dom 𝑂 ↔ ( 𝑆𝐸) ⊆ dom 𝑂))
167, 15mpbird 247 . 2 (𝜑 → ( 𝑆𝐸) ∈ 𝒫 dom 𝑂)
17 elpwi 4312 . . . . . . . . 9 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
1817adantl 473 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
191, 3caragenuni 41249 . . . . . . . . . 10 (𝜑 𝑆 = dom 𝑂)
2019eqcomd 2766 . . . . . . . . 9 (𝜑 dom 𝑂 = 𝑆)
2120adantr 472 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → dom 𝑂 = 𝑆)
2218, 21sseqtrd 3782 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 𝑆)
23 difin2 4033 . . . . . . 7 (𝑎 𝑆 → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
2422, 23syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (( 𝑆𝐸) ∩ 𝑎))
25 incom 3948 . . . . . . 7 (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸))
2625a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (( 𝑆𝐸) ∩ 𝑎) = (𝑎 ∩ ( 𝑆𝐸)))
2724, 26eqtr2d 2795 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∩ ( 𝑆𝐸)) = (𝑎𝐸))
2827fveq2d 6357 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∩ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
2922ssdifd 3889 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ ( 𝑆𝐸))
30 sscon 3887 . . . . . . . 8 ((𝑎𝐸) ⊆ ( 𝑆𝐸) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
3129, 30syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎 ∖ (𝑎𝐸)))
32 dfin4 4010 . . . . . . . . 9 (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸))
3332a1i 11 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)))
34 eqimss2 3799 . . . . . . . 8 ((𝑎𝐸) = (𝑎 ∖ (𝑎𝐸)) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ (𝑎𝐸)) ⊆ (𝑎𝐸))
3631, 35sstrd 3754 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) ⊆ (𝑎𝐸))
37 elinel1 3942 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → 𝑥𝑎)
38 elinel2 3943 . . . . . . . . . 10 (𝑥 ∈ (𝑎𝐸) → 𝑥𝐸)
39 elndif 3877 . . . . . . . . . 10 (𝑥𝐸 → ¬ 𝑥 ∈ ( 𝑆𝐸))
4038, 39syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑎𝐸) → ¬ 𝑥 ∈ ( 𝑆𝐸))
4137, 40eldifd 3726 . . . . . . . 8 (𝑥 ∈ (𝑎𝐸) → 𝑥 ∈ (𝑎 ∖ ( 𝑆𝐸)))
4241ssriv 3748 . . . . . . 7 (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸))
4342a1i 11 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ (𝑎 ∖ ( 𝑆𝐸)))
4436, 43eqssd 3761 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 ∖ ( 𝑆𝐸)) = (𝑎𝐸))
4544fveq2d 6357 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 ∖ ( 𝑆𝐸))) = (𝑂‘(𝑎𝐸)))
4628, 45oveq12d 6832 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
47 iccssxr 12469 . . . . 5 (0[,]+∞) ⊆ ℝ*
481adantr 472 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
4918ssdifssd 3891 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
5048, 2, 49omecl 41241 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5147, 50sseldi 3742 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
52 ssinss1 3984 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5317, 52syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎𝐸) ⊆ dom 𝑂)
5453adantl 473 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎𝐸) ⊆ dom 𝑂)
5548, 2, 54omecl 41241 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ (0[,]+∞))
5647, 55sseldi 3742 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎𝐸)) ∈ ℝ*)
5751, 56xaddcomd 40056 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
58 caragendifcl.e . . . . . 6 (𝜑𝐸𝑆)
591, 3caragenel 41233 . . . . . 6 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
6058, 59mpbid 222 . . . . 5 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
6160simprd 482 . . . 4 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6261r19.21bi 3070 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
6346, 57, 623eqtrd 2798 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 ∩ ( 𝑆𝐸))) +𝑒 (𝑂‘(𝑎 ∖ ( 𝑆𝐸)))) = (𝑂𝑎))
641, 2, 3, 16, 63carageneld 41240 1 (𝜑 → ( 𝑆𝐸) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  Vcvv 3340   ∖ cdif 3712   ∩ cin 3714   ⊆ wss 3715  𝒫 cpw 4302  ∪ cuni 4588  dom cdm 5266  ‘cfv 6049  (class class class)co 6814  0cc0 10148  +∞cpnf 10283  ℝ*cxr 10285   +𝑒 cxad 12157  [,]cicc 12391  OutMeascome 41227  CaraGenccaragen 41229 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-xadd 12160  df-icc 12395  df-ome 41228  df-caragen 41230 This theorem is referenced by:  caragensal  41263
 Copyright terms: Public domain W3C validator