Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenfiiuncl Structured version   Visualization version   GIF version

Theorem caragenfiiuncl 41253
Description: The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenfiiuncl.kph 𝑘𝜑
caragenfiiuncl.o (𝜑𝑂 ∈ OutMeas)
caragenfiiuncl.s 𝑆 = (CaraGen‘𝑂)
caragenfiiuncl.a (𝜑𝐴 ∈ Fin)
caragenfiiuncl.b ((𝜑𝑘𝐴) → 𝐵𝑆)
Assertion
Ref Expression
caragenfiiuncl (𝜑 𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝑂(𝑘)

Proof of Theorem caragenfiiuncl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4686 . . . . 5 (𝐴 = ∅ → 𝑘𝐴 𝐵 = 𝑘 ∈ ∅ 𝐵)
2 0iun 4729 . . . . . 6 𝑘 ∈ ∅ 𝐵 = ∅
32a1i 11 . . . . 5 (𝐴 = ∅ → 𝑘 ∈ ∅ 𝐵 = ∅)
41, 3eqtrd 2794 . . . 4 (𝐴 = ∅ → 𝑘𝐴 𝐵 = ∅)
54adantl 473 . . 3 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵 = ∅)
6 caragenfiiuncl.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
7 caragenfiiuncl.s . . . . 5 𝑆 = (CaraGen‘𝑂)
86, 7caragen0 41244 . . . 4 (𝜑 → ∅ ∈ 𝑆)
98adantr 472 . . 3 ((𝜑𝐴 = ∅) → ∅ ∈ 𝑆)
105, 9eqeltrd 2839 . 2 ((𝜑𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
11 simpl 474 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
12 neqne 2940 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
1312adantl 473 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
14 caragenfiiuncl.kph . . . . 5 𝑘𝜑
15 nfv 1992 . . . . 5 𝑘 𝐴 ≠ ∅
1614, 15nfan 1977 . . . 4 𝑘(𝜑𝐴 ≠ ∅)
17 caragenfiiuncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑆)
1817adantlr 753 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝐵𝑆)
1963ad2ant1 1128 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑂 ∈ OutMeas)
20 simp2 1132 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑥𝑆)
21 simp3 1133 . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → 𝑦𝑆)
2219, 7, 20, 21caragenuncl 41251 . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
23223adant1r 1188 . . . 4 (((𝜑𝐴 ≠ ∅) ∧ 𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
24 caragenfiiuncl.a . . . . 5 (𝜑𝐴 ∈ Fin)
2524adantr 472 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
26 simpr 479 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2716, 18, 23, 25, 26fiiuncl 39751 . . 3 ((𝜑𝐴 ≠ ∅) → 𝑘𝐴 𝐵𝑆)
2811, 13, 27syl2anc 696 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑘𝐴 𝐵𝑆)
2910, 28pm2.61dan 867 1 (𝜑 𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1632  wnf 1857  wcel 2139  wne 2932  cun 3713  c0 4058   ciun 4672  cfv 6049  Fincfn 8123  OutMeascome 41227  CaraGenccaragen 41229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-xadd 12160  df-icc 12395  df-ome 41228  df-caragen 41230
This theorem is referenced by:  carageniuncllem1  41259  carageniuncllem2  41260
  Copyright terms: Public domain W3C validator