Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatcan2d Structured version   Visualization version   GIF version

Theorem ccatcan2d 39203
Description: Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023.)
Hypotheses
Ref Expression
ccatcan2d.a (𝜑𝐴 ∈ Word 𝑉)
ccatcan2d.b (𝜑𝐵 ∈ Word 𝑉)
ccatcan2d.c (𝜑𝐶 ∈ Word 𝑉)
Assertion
Ref Expression
ccatcan2d (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem ccatcan2d
StepHypRef Expression
1 simpr 487 . . . . 5 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶))
2 ccatcan2d.a . . . . . . . . 9 (𝜑𝐴 ∈ Word 𝑉)
3 lencl 13878 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ0)
54nn0cnd 11951 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℂ)
65adantr 483 . . . . . 6 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) ∈ ℂ)
7 ccatcan2d.b . . . . . . . . 9 (𝜑𝐵 ∈ Word 𝑉)
8 lencl 13878 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
97, 8syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℕ0)
109nn0cnd 11951 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℂ)
1110adantr 483 . . . . . 6 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐵) ∈ ℂ)
12 ccatcan2d.c . . . . . . . . 9 (𝜑𝐶 ∈ Word 𝑉)
13 lencl 13878 . . . . . . . . 9 (𝐶 ∈ Word 𝑉 → (♯‘𝐶) ∈ ℕ0)
1412, 13syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐶) ∈ ℕ0)
1514nn0cnd 11951 . . . . . . 7 (𝜑 → (♯‘𝐶) ∈ ℂ)
1615adantr 483 . . . . . 6 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐶) ∈ ℂ)
17 ccatlen 13922 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐶 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶)))
182, 12, 17syl2anc 586 . . . . . . . 8 (𝜑 → (♯‘(𝐴 ++ 𝐶)) = ((♯‘𝐴) + (♯‘𝐶)))
19 fveq2 6663 . . . . . . . 8 ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → (♯‘(𝐴 ++ 𝐶)) = (♯‘(𝐵 ++ 𝐶)))
2018, 19sylan9req 2876 . . . . . . 7 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = (♯‘(𝐵 ++ 𝐶)))
21 ccatlen 13922 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉𝐶 ∈ Word 𝑉) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶)))
227, 12, 21syl2anc 586 . . . . . . . 8 (𝜑 → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶)))
2322adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘(𝐵 ++ 𝐶)) = ((♯‘𝐵) + (♯‘𝐶)))
2420, 23eqtrd 2855 . . . . . 6 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((♯‘𝐴) + (♯‘𝐶)) = ((♯‘𝐵) + (♯‘𝐶)))
256, 11, 16, 24addcan2ad 10839 . . . . 5 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → (♯‘𝐴) = (♯‘𝐵))
261, 25oveq12d 7167 . . . 4 ((𝜑 ∧ (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶)) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)))
2726ex 415 . . 3 (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵))))
28 pfxccat1 14059 . . . . 5 ((𝐴 ∈ Word 𝑉𝐶 ∈ Word 𝑉) → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴)
292, 12, 28syl2anc 586 . . . 4 (𝜑 → ((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = 𝐴)
30 pfxccat1 14059 . . . . 5 ((𝐵 ∈ Word 𝑉𝐶 ∈ Word 𝑉) → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵)
317, 12, 30syl2anc 586 . . . 4 (𝜑 → ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) = 𝐵)
3229, 31eqeq12d 2836 . . 3 (𝜑 → (((𝐴 ++ 𝐶) prefix (♯‘𝐴)) = ((𝐵 ++ 𝐶) prefix (♯‘𝐵)) ↔ 𝐴 = 𝐵))
3327, 32sylibd 241 . 2 (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) → 𝐴 = 𝐵))
34 oveq1 7156 . 2 (𝐴 = 𝐵 → (𝐴 ++ 𝐶) = (𝐵 ++ 𝐶))
3533, 34impbid1 227 1 (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  cfv 6348  (class class class)co 7149  cc 10528   + caddc 10533  0cn0 11891  chash 13687  Word cword 13858   ++ cconcat 13917   prefix cpfx 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-fzo 13031  df-hash 13688  df-word 13859  df-concat 13918  df-substr 13998  df-pfx 14028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator