Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk36 Structured version   Visualization version   GIF version

Theorem cdlemk36 35043
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b 𝐵 = (Base‘𝐾)
cdlemk4.l = (le‘𝐾)
cdlemk4.j = (join‘𝐾)
cdlemk4.m = (meet‘𝐾)
cdlemk4.a 𝐴 = (Atoms‘𝐾)
cdlemk4.h 𝐻 = (LHyp‘𝐾)
cdlemk4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk4.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk4.y 𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))
cdlemk4.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk36 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑋𝑃) = 𝑌)
Distinct variable groups:   𝑧,𝑏,   ,𝑏,𝑧   ,𝑏,𝑧   𝐴,𝑏,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏,𝑧   𝐾,𝑏,𝑧   𝑁,𝑏,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑧   𝑧,𝑌
Allowed substitution hints:   𝑋(𝑧,𝑏)   𝑌(𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk36
StepHypRef Expression
1 cdlemk4.x . . . . . 6 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
21eqcomi 2618 . . . . 5 (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) = 𝑋
3 simpl1 1056 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simpl2 1057 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
5 simpl3 1058 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)))
6 simpr1 1059 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑁𝑇)
7 simpr2 1060 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simpr3 1061 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐹) = (𝑅𝑁))
9 cdlemk4.b . . . . . . . 8 𝐵 = (Base‘𝐾)
10 cdlemk4.l . . . . . . . 8 = (le‘𝐾)
11 cdlemk4.j . . . . . . . 8 = (join‘𝐾)
12 cdlemk4.m . . . . . . . 8 = (meet‘𝐾)
13 cdlemk4.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
14 cdlemk4.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
15 cdlemk4.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemk4.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
17 cdlemk4.z . . . . . . . 8 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
18 cdlemk4.y . . . . . . . 8 𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))
199, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1cdlemk35 35042 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)
203, 4, 5, 6, 7, 8, 19syl132anc 1335 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)
211, 20syl5eqelr 2692 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) ∈ 𝑇)
22 fvex 6098 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) ∈ V
2315, 22eqeltri 2683 . . . . . . . 8 𝑇 ∈ V
2423riotaclbBAD 33083 . . . . . . 7 (∃!𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) ∈ 𝑇)
2521, 24sylibr 222 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃!𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
26 nfriota1 6496 . . . . . . . 8 𝑧(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
271, 26nfcxfr 2748 . . . . . . 7 𝑧𝑋
28 nfcv 2750 . . . . . . . 8 𝑧𝑇
29 nfv 1829 . . . . . . . . 9 𝑧(𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))
30 nfcv 2750 . . . . . . . . . . 11 𝑧𝑃
3127, 30nffv 6095 . . . . . . . . . 10 𝑧(𝑋𝑃)
3231nfeq1 2763 . . . . . . . . 9 𝑧(𝑋𝑃) = 𝑌
3329, 32nfim 1812 . . . . . . . 8 𝑧((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌)
3428, 33nfral 2928 . . . . . . 7 𝑧𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌)
35 nfra1 2924 . . . . . . . . . . 11 𝑏𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)
36 nfcv 2750 . . . . . . . . . . 11 𝑏𝑇
3735, 36nfriota 6498 . . . . . . . . . 10 𝑏(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
381, 37nfcxfr 2748 . . . . . . . . 9 𝑏𝑋
3938nfeq2 2765 . . . . . . . 8 𝑏 𝑧 = 𝑋
40 fveq1 6087 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝑧𝑃) = (𝑋𝑃))
4140eqeq1d 2611 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝑧𝑃) = 𝑌 ↔ (𝑋𝑃) = 𝑌))
4241imbi2d 328 . . . . . . . 8 (𝑧 = 𝑋 → (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌)))
4339, 42ralbid 2965 . . . . . . 7 (𝑧 = 𝑋 → (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌)))
4427, 34, 43riota2f 6510 . . . . . 6 ((𝑋𝑇 ∧ ∃!𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) → (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌) ↔ (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) = 𝑋))
4520, 25, 44syl2anc 690 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌) ↔ (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) = 𝑋))
462, 45mpbiri 246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌))
47 rsp 2912 . . . 4 (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌) → (𝑏𝑇 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌)))
4846, 47syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑏𝑇 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑋𝑃) = 𝑌)))
4948impd 445 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ((𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))) → (𝑋𝑃) = 𝑌))
50493impia 1252 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑋𝑃) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  ∃!wreu 2897  Vcvv 3172   class class class wbr 4577   I cid 4938  ccnv 5027  cres 5030  ccom 5032  cfv 5790  crio 6488  (class class class)co 6527  Basecbs 15644  lecple 15724  joincjn 16716  meetcmee 16717  Atomscatm 33392  HLchlt 33479  LHypclh 34112  LTrncltrn 34229  trLctrl 34287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-riotaBAD 33081
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-undef 7264  df-map 7724  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33305  df-ol 33307  df-oml 33308  df-covers 33395  df-ats 33396  df-atl 33427  df-cvlat 33451  df-hlat 33480  df-llines 33626  df-lplanes 33627  df-lvols 33628  df-lines 33629  df-psubsp 33631  df-pmap 33632  df-padd 33924  df-lhyp 34116  df-laut 34117  df-ldil 34232  df-ltrn 34233  df-trl 34288
This theorem is referenced by:  cdlemk37  35044  cdlemk42  35071
  Copyright terms: Public domain W3C validator