MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglble Structured version   Visualization version   GIF version

Theorem clatglble 17065
Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglble ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → (𝐺𝑆) 𝑋)

Proof of Theorem clatglble
StepHypRef Expression
1 clatglb.b . 2 𝐵 = (Base‘𝐾)
2 clatglb.l . 2 = (le‘𝐾)
3 clatglb.g . 2 𝐺 = (glb‘𝐾)
4 simp1 1059 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝐾 ∈ CLat)
51, 3clatglbcl2 17055 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
653adant3 1079 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑆 ∈ dom 𝐺)
7 simp3 1061 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑋𝑆)
81, 2, 3, 4, 6, 7glble 16940 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → (𝐺𝑆) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wss 3560   class class class wbr 4623  dom cdm 5084  cfv 5857  Basecbs 15800  lecple 15888  glbcglb 16883  CLatccla 17047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-glb 16915  df-clat 17048
This theorem is referenced by:  clatleglb  17066  clatglbss  17067  diaglbN  35863  diaintclN  35866  dibglbN  35974  dibintclN  35975  dihglblem2N  36102  dihglblem4  36105  dihglbcpreN  36108  dochvalr  36165
  Copyright terms: Public domain W3C validator