MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1loop Structured version   Visualization version   GIF version

Theorem clwwlknon1loop 27877
Description: If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1loop ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {⟨“𝑋”⟩})

Proof of Theorem clwwlknon1loop
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . 4 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → 𝑤 = ⟨“𝑋”⟩)
2 s1cl 13956 . . . . . . . . 9 (𝑋𝑉 → ⟨“𝑋”⟩ ∈ Word 𝑉)
32adantr 483 . . . . . . . 8 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ⟨“𝑋”⟩ ∈ Word 𝑉)
43adantr 483 . . . . . . 7 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → ⟨“𝑋”⟩ ∈ Word 𝑉)
5 eleq1 2900 . . . . . . . 8 (𝑤 = ⟨“𝑋”⟩ → (𝑤 ∈ Word 𝑉 ↔ ⟨“𝑋”⟩ ∈ Word 𝑉))
65adantl 484 . . . . . . 7 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → (𝑤 ∈ Word 𝑉 ↔ ⟨“𝑋”⟩ ∈ Word 𝑉))
74, 6mpbird 259 . . . . . 6 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → 𝑤 ∈ Word 𝑉)
8 simpr 487 . . . . . . 7 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → {𝑋} ∈ 𝐸)
98anim1ci 617 . . . . . 6 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
107, 9jca 514 . . . . 5 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)))
1110ex 415 . . . 4 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑤 = ⟨“𝑋”⟩ → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
121, 11impbid2 228 . . 3 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩))
1312alrimiv 1928 . 2 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩))
14 clwwlknon1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
15 clwwlknon1.c . . . . . 6 𝐶 = (ClWWalksNOn‘𝐺)
16 clwwlknon1.e . . . . . 6 𝐸 = (Edg‘𝐺)
1714, 15, 16clwwlknon1 27876 . . . . 5 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
1817eqeq1d 2823 . . . 4 (𝑋𝑉 → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = {⟨“𝑋”⟩}))
1918adantr 483 . . 3 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = {⟨“𝑋”⟩}))
20 rabeqsn 4606 . . 3 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = {⟨“𝑋”⟩} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩))
2119, 20syl6bb 289 . 2 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩)))
2213, 21mpbird 259 1 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {⟨“𝑋”⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  {crab 3142  {csn 4567  cfv 6355  (class class class)co 7156  1c1 10538  Word cword 13862  ⟨“cs1 13949  Vtxcvtx 26781  Edgcedg 26832  ClWWalksNOncclwwlknon 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-lsw 13915  df-s1 13950  df-clwwlk 27760  df-clwwlkn 27803  df-clwwlknon 27867
This theorem is referenced by:  clwwlknon1sn  27879  clwwlknon1le1  27880
  Copyright terms: Public domain W3C validator