MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3c Structured version   Visualization version   GIF version

Theorem cnfcom3c 8459
Description: Wrap the construction of cnfcom3 8457 into an existence quantifier. For any ω ⊆ 𝑏, there is a bijection from 𝑏 to some power of ω. Furthermore, this bijection is canonical , which means that we can find a single function 𝑔 which will give such bijections for every 𝑏 less than some arbitrarily large bound 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
cnfcom3c (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
Distinct variable group:   𝑔,𝑏,𝑤,𝐴

Proof of Theorem cnfcom3c
Dummy variables 𝑓 𝑘 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2605 . 2 dom (ω CNF 𝐴) = dom (ω CNF 𝐴)
2 eqid 2605 . 2 ((ω CNF 𝐴)‘𝑏) = ((ω CNF 𝐴)‘𝑏)
3 eqid 2605 . 2 OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)) = OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))
4 eqid 2605 . 2 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
5 eqid 2605 . 2 seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅) = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)
6 eqid 2605 . 2 ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) = ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)))
7 eqid 2605 . 2 ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥))) = ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))
8 eqid 2605 . 2 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))) = (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))
9 eqid 2605 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢))
10 eqid 2605 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))
11 eqid 2605 . 2 (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) = (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))
12 eqid 2605 . 2 (𝑏 ∈ (ω ↑𝑜 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))) = (𝑏 ∈ (ω ↑𝑜 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cnfcom3clem 8458 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1694  wcel 1975  wral 2891  wrex 2892  Vcvv 3168  cdif 3532  cun 3533  wss 3535  c0 3869   cuni 4362  cmpt 4633   E cep 4933  ccnv 5023  dom cdm 5024  ccom 5028  Oncon0 5622  1-1-ontowf1o 5785  cfv 5786  (class class class)co 6523  cmpt2 6525  ωcom 6930   supp csupp 7155  seq𝜔cseqom 7402  1𝑜c1o 7413   +𝑜 coa 7417   ·𝑜 comu 7418  𝑜 coe 7419  OrdIsocoi 8270   CNF ccnf 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-seqom 7403  df-1o 7420  df-2o 7421  df-oadd 7424  df-omul 7425  df-oexp 7426  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-oi 8271  df-cnf 8415
This theorem is referenced by:  infxpenc2  8701
  Copyright terms: Public domain W3C validator