MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3c Structured version   Visualization version   GIF version

Theorem cnfcom3c 8563
Description: Wrap the construction of cnfcom3 8561 into an existence quantifier. For any ω ⊆ 𝑏, there is a bijection from 𝑏 to some power of ω. Furthermore, this bijection is canonical , which means that we can find a single function 𝑔 which will give such bijections for every 𝑏 less than some arbitrarily large bound 𝐴. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
cnfcom3c (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
Distinct variable group:   𝑔,𝑏,𝑤,𝐴

Proof of Theorem cnfcom3c
Dummy variables 𝑓 𝑘 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 dom (ω CNF 𝐴) = dom (ω CNF 𝐴)
2 eqid 2621 . 2 ((ω CNF 𝐴)‘𝑏) = ((ω CNF 𝐴)‘𝑏)
3 eqid 2621 . 2 OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)) = OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))
4 eqid 2621 . 2 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
5 eqid 2621 . 2 seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅) = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)
6 eqid 2621 . 2 ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) = ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)))
7 eqid 2621 . 2 ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥))) = ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))
8 eqid 2621 . 2 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))) = (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))
9 eqid 2621 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢))
10 eqid 2621 . 2 (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣)) = (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))
11 eqid 2621 . 2 (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) = (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))
12 eqid 2621 . 2 (𝑏 ∈ (ω ↑𝑜 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))))) = (𝑏 ∈ (ω ↑𝑜 𝐴) ↦ (((𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑣) +𝑜 𝑢)) ∘ (𝑢 ∈ (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))), 𝑣 ∈ (ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘ dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))) ·𝑜 𝑢) +𝑜 𝑣))) ∘ (seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ ((𝑥 ∈ ((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (((ω ↑𝑜 (OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘)) ·𝑜 (((ω CNF 𝐴)‘𝑏)‘(OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅))‘𝑘))) +𝑜 𝑥)))), ∅)‘dom OrdIso( E , (((ω CNF 𝐴)‘𝑏) supp ∅)))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cnfcom3clem 8562 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1𝑜)(𝑔𝑏):𝑏1-1-onto→(ω ↑𝑜 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1701  wcel 1987  wral 2908  wrex 2909  Vcvv 3190  cdif 3557  cun 3558  wss 3560  c0 3897   cuni 4409  cmpt 4683   E cep 4993  ccnv 5083  dom cdm 5084  ccom 5088  Oncon0 5692  1-1-ontowf1o 5856  cfv 5857  (class class class)co 6615  cmpt2 6617  ωcom 7027   supp csupp 7255  seq𝜔cseqom 7502  1𝑜c1o 7513   +𝑜 coa 7517   ·𝑜 comu 7518  𝑜 coe 7519  OrdIsocoi 8374   CNF ccnf 8518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-seqom 7503  df-1o 7520  df-2o 7521  df-oadd 7524  df-omul 7525  df-oexp 7526  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-oi 8375  df-cnf 8519
This theorem is referenced by:  infxpenc2  8805
  Copyright terms: Public domain W3C validator