MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekindle Structured version   Visualization version   GIF version

Theorem dedekindle 10239
Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.)
Assertion
Ref Expression
dedekindle ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekindle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1087 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴 ⊆ ℝ)
2 simpr2 1088 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ⊆ ℝ)
3 simp1 1081 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴𝐵) = ∅)
4 simpl 472 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → 𝑥𝐴)
5 disjel 4056 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
63, 4, 5syl2an 493 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ¬ 𝑥𝐵)
7 eleq1 2718 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
87biimpcd 239 . . . . . . . . . . 11 (𝑦𝐵 → (𝑦 = 𝑥𝑥𝐵))
98necon3bd 2837 . . . . . . . . . 10 (𝑦𝐵 → (¬ 𝑥𝐵𝑦𝑥))
109ad2antll 765 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (¬ 𝑥𝐵𝑦𝑥))
116, 10mpd 15 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝑥)
12 simp2 1082 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
13 ssel2 3631 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1412, 4, 13syl2an 493 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ ℝ)
15 simp3 1083 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ)
16 simpr 476 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
17 ssel2 3631 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
1815, 16, 17syl2an 493 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ ℝ)
1914, 18ltlend 10220 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2019biimprd 238 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ((𝑥𝑦𝑦𝑥) → 𝑥 < 𝑦))
2111, 20mpan2d 710 . . . . . . 7 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝑦𝑥 < 𝑦))
2221ralimdvva 2993 . . . . . 6 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))
23223exp 1283 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))))
24233imp2 1304 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
25 dedekind 10238 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
261, 2, 24, 25syl3anc 1366 . . 3 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
2726ex 449 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
28 n0 3964 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝐵))
29 simp1 1081 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 ⊆ ℝ)
30 inss1 3866 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
3130sseli 3632 . . . . . . 7 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐴)
32 ssel2 3631 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
3329, 31, 32syl2an 493 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → 𝑤 ∈ ℝ)
34 nfv 1883 . . . . . . . . 9 𝑥 𝐴 ⊆ ℝ
35 nfv 1883 . . . . . . . . 9 𝑥 𝐵 ⊆ ℝ
36 nfra1 2970 . . . . . . . . 9 𝑥𝑥𝐴𝑦𝐵 𝑥𝑦
3734, 35, 36nf3an 1871 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
38 nfv 1883 . . . . . . . 8 𝑥 𝑤 ∈ (𝐴𝐵)
3937, 38nfan 1868 . . . . . . 7 𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵))
40 nfv 1883 . . . . . . . . . . 11 𝑦 𝐴 ⊆ ℝ
41 nfv 1883 . . . . . . . . . . 11 𝑦 𝐵 ⊆ ℝ
42 nfra2 2975 . . . . . . . . . . 11 𝑦𝑥𝐴𝑦𝐵 𝑥𝑦
4340, 41, 42nf3an 1871 . . . . . . . . . 10 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
44 nfv 1883 . . . . . . . . . 10 𝑦(𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)
4543, 44nfan 1868 . . . . . . . . 9 𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴))
46 rsp 2958 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → ∀𝑦𝐵 𝑥𝑦))
47 inss2 3867 . . . . . . . . . . . . . . . . . 18 (𝐴𝐵) ⊆ 𝐵
4847sseli 3632 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐵)
49 breq2 4689 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
5049rspccv 3337 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐵 𝑥𝑦 → (𝑤𝐵𝑥𝑤))
5148, 50syl5 34 . . . . . . . . . . . . . . . 16 (∀𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤))
5246, 51syl6 35 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤)))
5352com23 86 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝑤)))
5453imp32 448 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦 ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
55543ad2antl3 1245 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
5655adantr 480 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑥𝑤)
57 simp3 1083 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
5831adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴) → 𝑤𝐴)
59 breq1 4688 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
6059ralbidv 3015 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦𝐵 𝑤𝑦))
6160rspccva 3339 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦𝑤𝐴) → ∀𝑦𝐵 𝑤𝑦)
6257, 58, 61syl2an 493 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 𝑤𝑦)
6362r19.21bi 2961 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑤𝑦)
6456, 63jca 553 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → (𝑥𝑤𝑤𝑦))
6564ex 449 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → (𝑦𝐵 → (𝑥𝑤𝑤𝑦)))
6645, 65ralrimi 2986 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦))
6766expr 642 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦)))
6839, 67ralrimi 2986 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦))
69 breq2 4689 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑥𝑧𝑥𝑤))
70 breq1 4688 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
7169, 70anbi12d 747 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥𝑤𝑤𝑦)))
72712ralbidv 3018 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)))
7372rspcev 3340 . . . . . 6 ((𝑤 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7433, 68, 73syl2anc 694 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7574expcom 450 . . . 4 (𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7675exlimiv 1898 . . 3 (∃𝑤 𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7728, 76sylbi 207 . 2 ((𝐴𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7827, 77pm2.61ine 2906 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  cin 3606  wss 3607  c0 3948   class class class wbr 4685  cr 9973   < clt 10112  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118
This theorem is referenced by:  axcontlem10  25898
  Copyright terms: Public domain W3C validator