MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekindle Structured version   Visualization version   GIF version

Theorem dedekindle 10785
Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.)
Assertion
Ref Expression
dedekindle ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Proof of Theorem dedekindle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1190 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴 ⊆ ℝ)
2 simpr2 1191 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ⊆ ℝ)
3 simp1 1132 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴𝐵) = ∅)
4 simpl 485 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → 𝑥𝐴)
5 disjel 4387 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
63, 4, 5syl2an 597 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ¬ 𝑥𝐵)
7 eleq1w 2893 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
87biimpcd 251 . . . . . . . . . . 11 (𝑦𝐵 → (𝑦 = 𝑥𝑥𝐵))
98necon3bd 3025 . . . . . . . . . 10 (𝑦𝐵 → (¬ 𝑥𝐵𝑦𝑥))
109ad2antll 727 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (¬ 𝑥𝐵𝑦𝑥))
116, 10mpd 15 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝑥)
12 simp2 1133 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ)
13 ssel2 3945 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1412, 4, 13syl2an 597 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ ℝ)
15 simp3 1134 . . . . . . . . . . 11 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → 𝐵 ⊆ ℝ)
16 simpr 487 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
17 ssel2 3945 . . . . . . . . . . 11 ((𝐵 ⊆ ℝ ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
1815, 16, 17syl2an 597 . . . . . . . . . 10 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 ∈ ℝ)
1914, 18ltlend 10766 . . . . . . . . 9 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 < 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
2019biimprd 250 . . . . . . . 8 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → ((𝑥𝑦𝑦𝑥) → 𝑥 < 𝑦))
2111, 20mpan2d 692 . . . . . . 7 ((((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝑦𝑥 < 𝑦))
2221ralimdvva 3174 . . . . . 6 (((𝐴𝐵) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))
23223exp 1115 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ ℝ → (𝐵 ⊆ ℝ → (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦))))
24233imp2 1345 . . . 4 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦)
25 dedekind 10784 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
261, 2, 24, 25syl3anc 1367 . . 3 (((𝐴𝐵) = ∅ ∧ (𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
2726ex 415 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
28 n0 4291 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝐵))
29 simp1 1132 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → 𝐴 ⊆ ℝ)
30 elinel1 4155 . . . . . . 7 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐴)
31 ssel2 3945 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
3229, 30, 31syl2an 597 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → 𝑤 ∈ ℝ)
33 nfv 1915 . . . . . . . . 9 𝑥 𝐴 ⊆ ℝ
34 nfv 1915 . . . . . . . . 9 𝑥 𝐵 ⊆ ℝ
35 nfra1 3214 . . . . . . . . 9 𝑥𝑥𝐴𝑦𝐵 𝑥𝑦
3633, 34, 35nf3an 1902 . . . . . . . 8 𝑥(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
37 nfv 1915 . . . . . . . 8 𝑥 𝑤 ∈ (𝐴𝐵)
3836, 37nfan 1900 . . . . . . 7 𝑥((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵))
39 nfv 1915 . . . . . . . . . . 11 𝑦 𝐴 ⊆ ℝ
40 nfv 1915 . . . . . . . . . . 11 𝑦 𝐵 ⊆ ℝ
41 nfra2w 3222 . . . . . . . . . . 11 𝑦𝑥𝐴𝑦𝐵 𝑥𝑦
4239, 40, 41nf3an 1902 . . . . . . . . . 10 𝑦(𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
43 nfv 1915 . . . . . . . . . 10 𝑦(𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)
4442, 43nfan 1900 . . . . . . . . 9 𝑦((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴))
45 rsp 3200 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → ∀𝑦𝐵 𝑥𝑦))
46 elinel2 4156 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴𝐵) → 𝑤𝐵)
47 breq2 5051 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
4847rspccv 3607 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐵 𝑥𝑦 → (𝑤𝐵𝑥𝑤))
4946, 48syl5 34 . . . . . . . . . . . . . . . 16 (∀𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤))
5045, 49syl6 35 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑥𝐴 → (𝑤 ∈ (𝐴𝐵) → 𝑥𝑤)))
5150com23 86 . . . . . . . . . . . . . 14 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → (𝑤 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝑤)))
5251imp32 421 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦 ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
53523ad2antl3 1183 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → 𝑥𝑤)
5453adantr 483 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑥𝑤)
55 simp3 1134 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
5630adantr 483 . . . . . . . . . . . . 13 ((𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴) → 𝑤𝐴)
57 breq1 5050 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
5857ralbidv 3192 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦𝐵 𝑤𝑦))
5958rspccva 3609 . . . . . . . . . . . . 13 ((∀𝑥𝐴𝑦𝐵 𝑥𝑦𝑤𝐴) → ∀𝑦𝐵 𝑤𝑦)
6055, 56, 59syl2an 597 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 𝑤𝑦)
6160r19.21bi 3203 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → 𝑤𝑦)
6254, 61jca 514 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) ∧ 𝑦𝐵) → (𝑥𝑤𝑤𝑦))
6362ex 415 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → (𝑦𝐵 → (𝑥𝑤𝑤𝑦)))
6444, 63ralrimi 3211 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ (𝑤 ∈ (𝐴𝐵) ∧ 𝑥𝐴)) → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦))
6564expr 459 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → (𝑥𝐴 → ∀𝑦𝐵 (𝑥𝑤𝑤𝑦)))
6638, 65ralrimi 3211 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦))
67 breq2 5051 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑥𝑧𝑥𝑤))
68 breq1 5050 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
6967, 68anbi12d 632 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑥𝑧𝑧𝑦) ↔ (𝑥𝑤𝑤𝑦)))
70692ralbidv 3194 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)))
7170rspcev 3610 . . . . . 6 ((𝑤 ∈ ℝ ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑤𝑤𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7232, 66, 71syl2anc 586 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) ∧ 𝑤 ∈ (𝐴𝐵)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
7372expcom 416 . . . 4 (𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7473exlimiv 1931 . . 3 (∃𝑤 𝑤 ∈ (𝐴𝐵) → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7528, 74sylbi 219 . 2 ((𝐴𝐵) ≠ ∅ → ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦)))
7627, 75pm2.61ine 3095 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴𝑦𝐵 (𝑥𝑧𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3011  wral 3133  wrex 3134  cin 3918  wss 3919  c0 4274   class class class wbr 5047  cr 10517   < clt 10656  cle 10657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-mulcl 10580  ax-mulrcl 10581  ax-i2m1 10586  ax-1ne0 10587  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-sup 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7140  df-er 8270  df-en 8491  df-dom 8492  df-sdom 8493  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662
This theorem is referenced by:  axcontlem10  26740
  Copyright terms: Public domain W3C validator