HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhtheu Structured version   Visualization version   GIF version

Theorem pjhtheu 28560
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 28582 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjhtheu ((𝐻C𝐴 ∈ ℋ) → ∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐻,𝑦

Proof of Theorem pjhtheu
StepHypRef Expression
1 pjhth 28559 . . . . 5 (𝐻C → (𝐻 + (⊥‘𝐻)) = ℋ)
21eleq2d 2823 . . . 4 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ 𝐴 ∈ ℋ))
3 chsh 28388 . . . . 5 (𝐻C𝐻S )
4 shocsh 28450 . . . . . 6 (𝐻S → (⊥‘𝐻) ∈ S )
53, 4syl 17 . . . . 5 (𝐻C → (⊥‘𝐻) ∈ S )
6 shsel 28480 . . . . 5 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
73, 5, 6syl2anc 696 . . . 4 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
82, 7bitr3d 270 . . 3 (𝐻C → (𝐴 ∈ ℋ ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
98biimpa 502 . 2 ((𝐻C𝐴 ∈ ℋ) → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
10 ocin 28462 . . . . 5 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
113, 10syl 17 . . . 4 (𝐻C → (𝐻 ∩ (⊥‘𝐻)) = 0)
12 pjhthmo 28468 . . . 4 ((𝐻S ∧ (⊥‘𝐻) ∈ S ∧ (𝐻 ∩ (⊥‘𝐻)) = 0) → ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
133, 5, 11, 12syl3anc 1477 . . 3 (𝐻C → ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
1413adantr 472 . 2 ((𝐻C𝐴 ∈ ℋ) → ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
15 reu5 3296 . . 3 (∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ↔ (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
16 df-rmo 3056 . . . 4 (∃*𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ↔ ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
1716anbi2i 732 . . 3 ((∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)) ↔ (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1815, 17bitri 264 . 2 (∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ↔ (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) ∧ ∃*𝑥(𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
199, 14, 18sylanbrc 701 1 ((𝐻C𝐴 ∈ ℋ) → ∃!𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137  ∃*wmo 2606  wrex 3049  ∃!wreu 3050  ∃*wrmo 3051  cin 3712  cfv 6047  (class class class)co 6811  chil 28083   + cva 28084   S csh 28092   C cch 28093  cort 28094   + cph 28095  0c0h 28099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cc 9447  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204  ax-addf 10205  ax-mulf 10206  ax-hilex 28163  ax-hfvadd 28164  ax-hvcom 28165  ax-hvass 28166  ax-hv0cl 28167  ax-hvaddid 28168  ax-hfvmul 28169  ax-hvmulid 28170  ax-hvmulass 28171  ax-hvdistr1 28172  ax-hvdistr2 28173  ax-hvmul0 28174  ax-hfi 28243  ax-his1 28246  ax-his2 28247  ax-his3 28248  ax-his4 28249  ax-hcompl 28366
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-omul 7732  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fi 8480  df-sup 8511  df-inf 8512  df-oi 8578  df-card 8953  df-acn 8956  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-n0 11483  df-z 11568  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ico 12372  df-icc 12373  df-fz 12518  df-fl 12785  df-seq 12994  df-exp 13053  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-clim 14416  df-rlim 14417  df-rest 16283  df-topgen 16304  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-fbas 19943  df-fg 19944  df-top 20899  df-topon 20916  df-bases 20950  df-cld 21023  df-ntr 21024  df-cls 21025  df-nei 21102  df-lm 21233  df-haus 21319  df-fil 21849  df-fm 21941  df-flim 21942  df-flf 21943  df-cfil 23251  df-cau 23252  df-cmet 23253  df-grpo 27654  df-gid 27655  df-ginv 27656  df-gdiv 27657  df-ablo 27706  df-vc 27721  df-nv 27754  df-va 27757  df-ba 27758  df-sm 27759  df-0v 27760  df-vs 27761  df-nmcv 27762  df-ims 27763  df-ssp 27884  df-ph 27975  df-cbn 28026  df-hnorm 28132  df-hba 28133  df-hvsub 28135  df-hlim 28136  df-hcau 28137  df-sh 28371  df-ch 28385  df-oc 28416  df-ch0 28417  df-shs 28474
This theorem is referenced by:  pjhtheu2  28582
  Copyright terms: Public domain W3C validator