Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfn0 Structured version   Visualization version   GIF version

Theorem nmfn0 28692
 Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfn0 (normfn‘( ℋ × {0})) = 0

Proof of Theorem nmfn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lnfn 28690 . . 3 ( ℋ × {0}) ∈ LinFn
2 lnfnf 28589 . . 3 (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ)
3 nmfnval 28581 . . 3 (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ))
41, 2, 3mp2b 10 . 2 (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )
5 c0ex 9978 . . . . . . . . . . . 12 0 ∈ V
65fvconst2 6423 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0)
76fveq2d 6152 . . . . . . . . . 10 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0))
8 abs0 13959 . . . . . . . . . 10 (abs‘0) = 0
97, 8syl6eq 2671 . . . . . . . . 9 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0)
109eqeq2d 2631 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0))
1110anbi2d 739 . . . . . . 7 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0)))
1211rexbiia 3033 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0))
13 ax-hv0cl 27706 . . . . . . . 8 0 ∈ ℋ
14 0le1 10495 . . . . . . . 8 0 ≤ 1
15 fveq2 6148 . . . . . . . . . . 11 (𝑦 = 0 → (norm𝑦) = (norm‘0))
16 norm0 27831 . . . . . . . . . . 11 (norm‘0) = 0
1715, 16syl6eq 2671 . . . . . . . . . 10 (𝑦 = 0 → (norm𝑦) = 0)
1817breq1d 4623 . . . . . . . . 9 (𝑦 = 0 → ((norm𝑦) ≤ 1 ↔ 0 ≤ 1))
1918rspcev 3295 . . . . . . . 8 ((0 ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (norm𝑦) ≤ 1)
2013, 14, 19mp2an 707 . . . . . . 7 𝑦 ∈ ℋ (norm𝑦) ≤ 1
21 r19.41v 3081 . . . . . . 7 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (norm𝑦) ≤ 1 ∧ 𝑥 = 0))
2220, 21mpbiran 952 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0)
2312, 22bitri 264 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0)
2423abbii 2736 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥𝑥 = 0}
25 df-sn 4149 . . . 4 {0} = {𝑥𝑥 = 0}
2624, 25eqtr4i 2646 . . 3 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0}
2726supeq1i 8297 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < )
28 xrltso 11918 . . 3 < Or ℝ*
29 0xr 10030 . . 3 0 ∈ ℝ*
30 supsn 8322 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3128, 29, 30mp2an 707 . 2 sup({0}, ℝ*, < ) = 0
324, 27, 313eqtri 2647 1 (normfn‘( ℋ × {0})) = 0
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 384   = wceq 1480   ∈ wcel 1987  {cab 2607  ∃wrex 2908  {csn 4148   class class class wbr 4613   Or wor 4994   × cxp 5072  ⟶wf 5843  ‘cfv 5847  supcsup 8290  ℂcc 9878  0cc0 9880  1c1 9881  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  abscabs 13908   ℋchil 27622  normℎcno 27626  0ℎc0v 27627  normfncnmf 27654  LinFnclf 27657 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-hilex 27702  ax-hfvadd 27703  ax-hv0cl 27706  ax-hfvmul 27708  ax-hvmul0 27713  ax-hfi 27782  ax-his3 27787 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-hnorm 27671  df-nmfn 28550  df-lnfn 28553 This theorem is referenced by:  nmbdfnlb  28755  branmfn  28810
 Copyright terms: Public domain W3C validator