HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfn0 Structured version   Visualization version   GIF version

Theorem nmfn0 29764
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfn0 (normfn‘( ℋ × {0})) = 0

Proof of Theorem nmfn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lnfn 29762 . . 3 ( ℋ × {0}) ∈ LinFn
2 lnfnf 29661 . . 3 (( ℋ × {0}) ∈ LinFn → ( ℋ × {0}): ℋ⟶ℂ)
3 nmfnval 29653 . . 3 (( ℋ × {0}): ℋ⟶ℂ → (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ))
41, 2, 3mp2b 10 . 2 (normfn‘( ℋ × {0})) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < )
5 c0ex 10635 . . . . . . . . . . . 12 0 ∈ V
65fvconst2 6966 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (( ℋ × {0})‘𝑦) = 0)
76fveq2d 6674 . . . . . . . . . 10 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = (abs‘0))
8 abs0 14645 . . . . . . . . . 10 (abs‘0) = 0
97, 8syl6eq 2872 . . . . . . . . 9 (𝑦 ∈ ℋ → (abs‘(( ℋ × {0})‘𝑦)) = 0)
109eqeq2d 2832 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 = (abs‘(( ℋ × {0})‘𝑦)) ↔ 𝑥 = 0))
1110anbi2d 630 . . . . . . 7 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0)))
1211rexbiia 3246 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0))
13 ax-hv0cl 28780 . . . . . . . 8 0 ∈ ℋ
14 0le1 11163 . . . . . . . 8 0 ≤ 1
15 fveq2 6670 . . . . . . . . . . 11 (𝑦 = 0 → (norm𝑦) = (norm‘0))
16 norm0 28905 . . . . . . . . . . 11 (norm‘0) = 0
1715, 16syl6eq 2872 . . . . . . . . . 10 (𝑦 = 0 → (norm𝑦) = 0)
1817breq1d 5076 . . . . . . . . 9 (𝑦 = 0 → ((norm𝑦) ≤ 1 ↔ 0 ≤ 1))
1918rspcev 3623 . . . . . . . 8 ((0 ∈ ℋ ∧ 0 ≤ 1) → ∃𝑦 ∈ ℋ (norm𝑦) ≤ 1)
2013, 14, 19mp2an 690 . . . . . . 7 𝑦 ∈ ℋ (norm𝑦) ≤ 1
21 r19.41v 3347 . . . . . . 7 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑦 ∈ ℋ (norm𝑦) ≤ 1 ∧ 𝑥 = 0))
2220, 21mpbiran 707 . . . . . 6 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = 0) ↔ 𝑥 = 0)
2312, 22bitri 277 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦))) ↔ 𝑥 = 0)
2423abbii 2886 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {𝑥𝑥 = 0}
25 df-sn 4568 . . . 4 {0} = {𝑥𝑥 = 0}
2624, 25eqtr4i 2847 . . 3 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))} = {0}
2726supeq1i 8911 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(( ℋ × {0})‘𝑦)))}, ℝ*, < ) = sup({0}, ℝ*, < )
28 xrltso 12535 . . 3 < Or ℝ*
29 0xr 10688 . . 3 0 ∈ ℝ*
30 supsn 8936 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3128, 29, 30mp2an 690 . 2 sup({0}, ℝ*, < ) = 0
324, 27, 313eqtri 2848 1 (normfn‘( ℋ × {0})) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  {csn 4567   class class class wbr 5066   Or wor 5473   × cxp 5553  wf 6351  cfv 6355  supcsup 8904  cc 10535  0cc0 10537  1c1 10538  *cxr 10674   < clt 10675  cle 10676  abscabs 14593  chba 28696  normcno 28700  0c0v 28701  normfncnmf 28728  LinFnclf 28731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-hilex 28776  ax-hfvadd 28777  ax-hv0cl 28780  ax-hfvmul 28782  ax-hvmul0 28787  ax-hfi 28856  ax-his3 28861
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-hnorm 28745  df-nmfn 29622  df-lnfn 29625
This theorem is referenced by:  nmbdfnlb  29827  branmfn  29882
  Copyright terms: Public domain W3C validator