MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffi2 Structured version   Visualization version   GIF version

Theorem dffi2 8276
Description: The set of finite intersections is the smallest set that contains 𝐴 and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
dffi2 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝑉,𝑧
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dffi2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3198 . 2 (𝐴𝑉𝐴 ∈ V)
2 vex 3189 . . . . . . . . . 10 𝑡 ∈ V
3 elfi 8266 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝐴 ∈ V) → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
42, 3mpan 705 . . . . . . . . 9 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
54biimpd 219 . . . . . . . 8 (𝐴 ∈ V → (𝑡 ∈ (fi‘𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥))
6 df-rex 2913 . . . . . . . . 9 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥 ↔ ∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥))
7 fiint 8184 . . . . . . . . . . . 12 (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧))
8 inss1 3813 . . . . . . . . . . . . . . . . . . . . . 22 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
98sseli 3580 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
109elpwid 4143 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
11103ad2ant2 1081 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝐴)
12 simp1 1059 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝐴𝑧)
1311, 12sstrd 3594 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥𝑧)
14 eqvisset 3197 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑥 𝑥 ∈ V)
15 intex 4782 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
1614, 15sylibr 224 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑥 ≠ ∅)
17163ad2ant3 1082 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ≠ ∅)
18 inss2 3814 . . . . . . . . . . . . . . . . . . . 20 (𝒫 𝐴 ∩ Fin) ⊆ Fin
1918sseli 3580 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
20193ad2ant2 1081 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑥 ∈ Fin)
2113, 17, 203jca 1240 . . . . . . . . . . . . . . . . 17 ((𝐴𝑧𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin))
22213expib 1265 . . . . . . . . . . . . . . . 16 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)))
23 pm2.27 42 . . . . . . . . . . . . . . . 16 ((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧))
2422, 23syl6 35 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑥𝑧)))
25 eleq1 2686 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → (𝑡𝑧 𝑥𝑧))
2625biimprd 238 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑥 → ( 𝑥𝑧𝑡𝑧))
2726adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧))
2827a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → ( 𝑥𝑧𝑡𝑧)))
2924, 28syldd 72 . . . . . . . . . . . . . 14 (𝐴𝑧 → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → 𝑡𝑧)))
3029com23 86 . . . . . . . . . . . . 13 (𝐴𝑧 → (((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
3130alimdv 1842 . . . . . . . . . . . 12 (𝐴𝑧 → (∀𝑥((𝑥𝑧𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
327, 31syl5bi 232 . . . . . . . . . . 11 (𝐴𝑧 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧)))
3332imp 445 . . . . . . . . . 10 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → ∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
34 19.23v 1899 . . . . . . . . . 10 (∀𝑥((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧) ↔ (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
3533, 34sylib 208 . . . . . . . . 9 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑡 = 𝑥) → 𝑡𝑧))
366, 35syl5bi 232 . . . . . . . 8 ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑡 = 𝑥𝑡𝑧))
375, 36sylan9 688 . . . . . . 7 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (𝑡 ∈ (fi‘𝐴) → 𝑡𝑧))
3837ssrdv 3590 . . . . . 6 ((𝐴 ∈ V ∧ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)) → (fi‘𝐴) ⊆ 𝑧)
3938ex 450 . . . . 5 (𝐴 ∈ V → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
4039alrimiv 1852 . . . 4 (𝐴 ∈ V → ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
41 ssintab 4461 . . . 4 ((fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑧((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) → (fi‘𝐴) ⊆ 𝑧))
4240, 41sylibr 224 . . 3 (𝐴 ∈ V → (fi‘𝐴) ⊆ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
43 ssfii 8272 . . . . 5 (𝐴 ∈ V → 𝐴 ⊆ (fi‘𝐴))
44 fiin 8275 . . . . . . 7 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
4544rgen2a 2971 . . . . . 6 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
4645a1i 11 . . . . 5 (𝐴 ∈ V → ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴))
47 fvex 6160 . . . . . 6 (fi‘𝐴) ∈ V
48 sseq2 3608 . . . . . . 7 (𝑧 = (fi‘𝐴) → (𝐴𝑧𝐴 ⊆ (fi‘𝐴)))
49 eleq2 2687 . . . . . . . . 9 (𝑧 = (fi‘𝐴) → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ (fi‘𝐴)))
5049raleqbi1dv 3135 . . . . . . . 8 (𝑧 = (fi‘𝐴) → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
5150raleqbi1dv 3135 . . . . . . 7 (𝑧 = (fi‘𝐴) → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
5248, 51anbi12d 746 . . . . . 6 (𝑧 = (fi‘𝐴) → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴))))
5347, 52elab 3334 . . . . 5 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ (𝐴 ⊆ (fi‘𝐴) ∧ ∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)))
5443, 46, 53sylanbrc 697 . . . 4 (𝐴 ∈ V → (fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
55 intss1 4459 . . . 4 ((fi‘𝐴) ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5654, 55syl 17 . . 3 (𝐴 ∈ V → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ (fi‘𝐴))
5742, 56eqssd 3601 . 2 (𝐴 ∈ V → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
581, 57syl 17 1 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cin 3555  wss 3556  c0 3893  𝒫 cpw 4132   cint 4442  cfv 5849  Fincfn 7902  ficfi 8263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-en 7903  df-fin 7906  df-fi 8264
This theorem is referenced by:  fiss  8277  inficl  8278  dffi3  8284  fbssfi  21554
  Copyright terms: Public domain W3C validator