MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiss Structured version   Visualization version   GIF version

Theorem fiss 8315
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3602 . . . . . 6 (𝐴𝐵 → (𝐵𝑦𝐴𝑦))
21adantl 482 . . . . 5 ((𝐵𝑉𝐴𝐵) → (𝐵𝑦𝐴𝑦))
32anim1d 587 . . . 4 ((𝐵𝑉𝐴𝐵) → ((𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦) → (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)))
43ss2abdv 3667 . . 3 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
5 intss 4489 . . 3 ({𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
64, 5syl 17 . 2 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
7 ssexg 4795 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 469 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
9 dffi2 8314 . . 3 (𝐴 ∈ V → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
108, 9syl 17 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
11 dffi2 8314 . . 3 (𝐵𝑉 → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
1211adantr 481 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
136, 10, 123sstr4d 3640 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  {cab 2606  wral 2909  Vcvv 3195  cin 3566  wss 3567   cint 4466  cfv 5876  ficfi 8301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-fin 7944  df-fi 8302
This theorem is referenced by:  fipwuni  8317  elfiun  8321  tgfiss  20776  ordtbas  20977  leordtval2  20997  lecldbas  21004  2ndcsb  21233  ptbasfi  21365  fclscmpi  21814  prdsxmslem2  22315
  Copyright terms: Public domain W3C validator