MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difinf Structured version   Visualization version   GIF version

Theorem difinf 8174
Description: An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
difinf ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)

Proof of Theorem difinf
StepHypRef Expression
1 unfi 8171 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵) ∪ 𝐵) ∈ Fin)
2 undif1 4015 . . . . . . 7 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
32eleq1i 2689 . . . . . 6 (((𝐴𝐵) ∪ 𝐵) ∈ Fin ↔ (𝐴𝐵) ∈ Fin)
4 unfir 8172 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
54simpld 475 . . . . . 6 ((𝐴𝐵) ∈ Fin → 𝐴 ∈ Fin)
63, 5sylbi 207 . . . . 5 (((𝐴𝐵) ∪ 𝐵) ∈ Fin → 𝐴 ∈ Fin)
71, 6syl 17 . . . 4 (((𝐴𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
87expcom 451 . . 3 (𝐵 ∈ Fin → ((𝐴𝐵) ∈ Fin → 𝐴 ∈ Fin))
98con3d 148 . 2 (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → ¬ (𝐴𝐵) ∈ Fin))
109impcom 446 1 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1987  cdif 3552  cun 3553  Fincfn 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-oadd 7509  df-er 7687  df-en 7900  df-fin 7903
This theorem is referenced by:  ackbij1lem18  9003  bitsf1  15092  cusgrfilem3  26240  hasheuni  29928  topdifinffinlem  32827  eldioph2lem2  36804
  Copyright terms: Public domain W3C validator