Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem2 Structured version   Visualization version   GIF version

Theorem eldioph2lem2 36839
Description: Lemma for eldioph2 36840. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem2 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Distinct variable groups:   𝑁,𝑐   𝑆,𝑐   𝐴,𝑐

Proof of Theorem eldioph2lem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 791 . . . 4 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ¬ 𝑆 ∈ Fin)
2 fzfi 12719 . . . 4 (1...𝑁) ∈ Fin
3 difinf 8182 . . . 4 ((¬ 𝑆 ∈ Fin ∧ (1...𝑁) ∈ Fin) → ¬ (𝑆 ∖ (1...𝑁)) ∈ Fin)
41, 2, 3sylancl 693 . . 3 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ¬ (𝑆 ∖ (1...𝑁)) ∈ Fin)
5 fzfi 12719 . . . 4 (1...𝐴) ∈ Fin
6 diffi 8144 . . . 4 ((1...𝐴) ∈ Fin → ((1...𝐴) ∖ (1...𝑁)) ∈ Fin)
75, 6ax-mp 5 . . 3 ((1...𝐴) ∖ (1...𝑁)) ∈ Fin
8 isinffi 8770 . . 3 ((¬ (𝑆 ∖ (1...𝑁)) ∈ Fin ∧ ((1...𝐴) ∖ (1...𝑁)) ∈ Fin) → ∃𝑎 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)))
94, 7, 8sylancl 693 . 2 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑎 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)))
10 f1f1orn 6110 . . . . . . . 8 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran 𝑎)
1110adantl 482 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran 𝑎)
12 f1oi 6136 . . . . . . . 8 ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)
1312a1i 11 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁))
14 incom 3788 . . . . . . . . 9 (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ((1...𝑁) ∩ ((1...𝐴) ∖ (1...𝑁)))
15 disjdif 4017 . . . . . . . . 9 ((1...𝑁) ∩ ((1...𝐴) ∖ (1...𝑁))) = ∅
1614, 15eqtri 2643 . . . . . . . 8 (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅
1716a1i 11 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
18 f1f 6063 . . . . . . . . . . . 12 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → 𝑎:((1...𝐴) ∖ (1...𝑁))⟶(𝑆 ∖ (1...𝑁)))
19 frn 6015 . . . . . . . . . . . 12 (𝑎:((1...𝐴) ∖ (1...𝑁))⟶(𝑆 ∖ (1...𝑁)) → ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁)))
2018, 19syl 17 . . . . . . . . . . 11 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁)))
2120adantl 482 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁)))
22 ssrin 3821 . . . . . . . . . 10 (ran 𝑎 ⊆ (𝑆 ∖ (1...𝑁)) → (ran 𝑎 ∩ (1...𝑁)) ⊆ ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁)))
2321, 22syl 17 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) ⊆ ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁)))
24 incom 3788 . . . . . . . . . 10 ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁)) = ((1...𝑁) ∩ (𝑆 ∖ (1...𝑁)))
25 disjdif 4017 . . . . . . . . . 10 ((1...𝑁) ∩ (𝑆 ∖ (1...𝑁))) = ∅
2624, 25eqtri 2643 . . . . . . . . 9 ((𝑆 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅
2723, 26syl6sseq 3635 . . . . . . . 8 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) ⊆ ∅)
28 ss0 3951 . . . . . . . 8 ((ran 𝑎 ∩ (1...𝑁)) ⊆ ∅ → (ran 𝑎 ∩ (1...𝑁)) = ∅)
2927, 28syl 17 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∩ (1...𝑁)) = ∅)
30 f1oun 6118 . . . . . . 7 (((𝑎:((1...𝐴) ∖ (1...𝑁))–1-1-onto→ran 𝑎 ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅ ∧ (ran 𝑎 ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran 𝑎 ∪ (1...𝑁)))
3111, 13, 17, 29, 30syl22anc 1324 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran 𝑎 ∪ (1...𝑁)))
32 f1of1 6098 . . . . . 6 ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1-onto→(ran 𝑎 ∪ (1...𝑁)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)))
3331, 32syl 17 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)))
34 uncom 3740 . . . . . . 7 (((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁)))
35 simplrr 800 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → 𝐴 ∈ (ℤ𝑁))
36 fzss2 12331 . . . . . . . . 9 (𝐴 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝐴))
3735, 36syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (1...𝑁) ⊆ (1...𝐴))
38 undif 4026 . . . . . . . 8 ((1...𝑁) ⊆ (1...𝐴) ↔ ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁))) = (1...𝐴))
3937, 38sylib 208 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((1...𝑁) ∪ ((1...𝐴) ∖ (1...𝑁))) = (1...𝐴))
4034, 39syl5eq 2667 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁)) = (1...𝐴))
41 f1eq2 6059 . . . . . 6 ((((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁)) = (1...𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁))))
4240, 41syl 17 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((1...𝐴) ∖ (1...𝑁)) ∪ (1...𝑁))–1-1→(ran 𝑎 ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁))))
4333, 42mpbid 222 . . . 4 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁)))
4420difss2d 3723 . . . . . 6 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → ran 𝑎𝑆)
4544adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ran 𝑎𝑆)
46 simplrl 799 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝑆)
4745, 46unssd 3772 . . . 4 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (ran 𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
48 f1ss 6068 . . . 4 (((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1→(ran 𝑎 ∪ (1...𝑁)) ∧ (ran 𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆)
4943, 47, 48syl2anc 692 . . 3 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆)
50 resundir 5375 . . . 4 ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁)))
51 dmres 5383 . . . . . . . 8 dom (𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎)
52 incom 3788 . . . . . . . . 9 ((1...𝑁) ∩ dom 𝑎) = (dom 𝑎 ∩ (1...𝑁))
53 f1dm 6067 . . . . . . . . . . . 12 (𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁)) → dom 𝑎 = ((1...𝐴) ∖ (1...𝑁)))
5453adantl 482 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → dom 𝑎 = ((1...𝐴) ∖ (1...𝑁)))
5554ineq1d 3796 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (dom 𝑎 ∩ (1...𝑁)) = (((1...𝐴) ∖ (1...𝑁)) ∩ (1...𝑁)))
5655, 16syl6eq 2671 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (dom 𝑎 ∩ (1...𝑁)) = ∅)
5752, 56syl5eq 2667 . . . . . . . 8 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅)
5851, 57syl5eq 2667 . . . . . . 7 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅)
59 relres 5390 . . . . . . . 8 Rel (𝑎 ↾ (1...𝑁))
60 reldm0 5308 . . . . . . . 8 (Rel (𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅))
6159, 60ax-mp 5 . . . . . . 7 ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)
6258, 61sylibr 224 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅)
63 residm 5394 . . . . . . 7 (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))
6463a1i 11 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
6562, 64uneq12d 3751 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁))))
66 uncom 3740 . . . . . 6 (∅ ∪ ( I ↾ (1...𝑁))) = (( I ↾ (1...𝑁)) ∪ ∅)
67 un0 3944 . . . . . 6 (( I ↾ (1...𝑁)) ∪ ∅) = ( I ↾ (1...𝑁))
6866, 67eqtri 2643 . . . . 5 (∅ ∪ ( I ↾ (1...𝑁))) = ( I ↾ (1...𝑁))
6965, 68syl6eq 2671 . . . 4 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁)))
7050, 69syl5eq 2667 . . 3 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
71 vex 3192 . . . . 5 𝑎 ∈ V
72 ovex 6638 . . . . . 6 (1...𝑁) ∈ V
73 resiexg 7056 . . . . . 6 ((1...𝑁) ∈ V → ( I ↾ (1...𝑁)) ∈ V)
7472, 73ax-mp 5 . . . . 5 ( I ↾ (1...𝑁)) ∈ V
7571, 74unex 6916 . . . 4 (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V
76 f1eq1 6058 . . . . 5 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑐:(1...𝐴)–1-1𝑆 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆))
77 reseq1 5355 . . . . . 6 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑐 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)))
7877eqeq1d 2623 . . . . 5 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
7976, 78anbi12d 746 . . . 4 (𝑐 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
8075, 79spcev 3289 . . 3 (((𝑎 ∪ ( I ↾ (1...𝑁))):(1...𝐴)–1-1𝑆 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
8149, 70, 80syl2anc 692 . 2 ((((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) ∧ 𝑎:((1...𝐴) ∖ (1...𝑁))–1-1→(𝑆 ∖ (1...𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
829, 81exlimddv 1860 1 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  Vcvv 3189  cdif 3556  cun 3557  cin 3558  wss 3559  c0 3896   I cid 4989  dom cdm 5079  ran crn 5080  cres 5081  Rel wrel 5084  wf 5848  1-1wf1 5849  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610  Fincfn 7907  1c1 9889  0cn0 11244  cuz 11639  ...cfz 12276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277
This theorem is referenced by:  eldioph2b  36841
  Copyright terms: Public domain W3C validator