Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmct Structured version   Visualization version   GIF version

Theorem dmct 9291
 Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
dmct (𝐴 ≼ ω → dom 𝐴 ≼ ω)

Proof of Theorem dmct
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmresv 5555 . 2 dom (𝐴 ↾ V) = dom 𝐴
2 resss 5385 . . . . 5 (𝐴 ↾ V) ⊆ 𝐴
3 ctex 7915 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
4 ssexg 4769 . . . . 5 (((𝐴 ↾ V) ⊆ 𝐴𝐴 ∈ V) → (𝐴 ↾ V) ∈ V)
52, 3, 4sylancr 694 . . . 4 (𝐴 ≼ ω → (𝐴 ↾ V) ∈ V)
6 fvex 6160 . . . . . . 7 (1st𝑥) ∈ V
7 eqid 2626 . . . . . . 7 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) = (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))
86, 7fnmpti 5981 . . . . . 6 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) Fn (𝐴 ↾ V)
9 dffn4 6080 . . . . . 6 ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) Fn (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
108, 9mpbi 220 . . . . 5 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))
11 relres 5389 . . . . . 6 Rel (𝐴 ↾ V)
12 reldm 7167 . . . . . 6 (Rel (𝐴 ↾ V) → dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
13 foeq3 6072 . . . . . 6 (dom (𝐴 ↾ V) = ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)) → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥))))
1411, 12, 13mp2b 10 . . . . 5 ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) ↔ (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→ran (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)))
1510, 14mpbir 221 . . . 4 (𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V)
16 fodomg 9290 . . . 4 ((𝐴 ↾ V) ∈ V → ((𝑥 ∈ (𝐴 ↾ V) ↦ (1st𝑥)):(𝐴 ↾ V)–onto→dom (𝐴 ↾ V) → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V)))
175, 15, 16mpisyl 21 . . 3 (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ (𝐴 ↾ V))
18 ssdomg 7946 . . . . 5 (𝐴 ∈ V → ((𝐴 ↾ V) ⊆ 𝐴 → (𝐴 ↾ V) ≼ 𝐴))
193, 2, 18mpisyl 21 . . . 4 (𝐴 ≼ ω → (𝐴 ↾ V) ≼ 𝐴)
20 domtr 7954 . . . 4 (((𝐴 ↾ V) ≼ 𝐴𝐴 ≼ ω) → (𝐴 ↾ V) ≼ ω)
2119, 20mpancom 702 . . 3 (𝐴 ≼ ω → (𝐴 ↾ V) ≼ ω)
22 domtr 7954 . . 3 ((dom (𝐴 ↾ V) ≼ (𝐴 ↾ V) ∧ (𝐴 ↾ V) ≼ ω) → dom (𝐴 ↾ V) ≼ ω)
2317, 21, 22syl2anc 692 . 2 (𝐴 ≼ ω → dom (𝐴 ↾ V) ≼ ω)
241, 23syl5eqbrr 4654 1 (𝐴 ≼ ω → dom 𝐴 ≼ ω)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1992  Vcvv 3191   ⊆ wss 3560   class class class wbr 4618   ↦ cmpt 4678  dom cdm 5079  ran crn 5080   ↾ cres 5081  Rel wrel 5084   Fn wfn 5845  –onto→wfo 5848  ‘cfv 5850  ωcom 7013  1st c1st 7114   ≼ cdom 7898 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-ac2 9230 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-card 8710  df-acn 8713  df-ac 8884 This theorem is referenced by:  rnct  9292
 Copyright terms: Public domain W3C validator