MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnmuln0 Structured version   Visualization version   GIF version

Theorem domnmuln0 20067
Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domnmuln0 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )

Proof of Theorem domnmuln0
StepHypRef Expression
1 an4 654 . . 3 (((𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) ↔ ((𝑋𝐵𝑌𝐵) ∧ (𝑋0𝑌0 )))
2 domneq0.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
3 domneq0.t . . . . . . . . 9 · = (.r𝑅)
4 domneq0.z . . . . . . . . 9 0 = (0g𝑅)
52, 3, 4domneq0 20066 . . . . . . . 8 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
653expb 1115 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
76necon3abid 3051 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 · 𝑌) ≠ 0 ↔ ¬ (𝑋 = 0𝑌 = 0 )))
8 neanior 3108 . . . . . 6 ((𝑋0𝑌0 ) ↔ ¬ (𝑋 = 0𝑌 = 0 ))
97, 8syl6rbbr 292 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋0𝑌0 ) ↔ (𝑋 · 𝑌) ≠ 0 ))
109biimpd 231 . . . 4 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋0𝑌0 ) → (𝑋 · 𝑌) ≠ 0 ))
1110expimpd 456 . . 3 (𝑅 ∈ Domn → (((𝑋𝐵𝑌𝐵) ∧ (𝑋0𝑌0 )) → (𝑋 · 𝑌) ≠ 0 ))
121, 11syl5bi 244 . 2 (𝑅 ∈ Domn → (((𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 ))
13123impib 1111 1 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wne 3015  cfv 6352  (class class class)co 7153  Basecbs 16479  .rcmulr 16562  0gc0g 16709  Domncdomn 20049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-mgp 19236  df-ring 19295  df-nzr 20027  df-domn 20053
This theorem is referenced by:  abvn0b  20071  deg1mhm  39882  domnmsuppn0  44491
  Copyright terms: Public domain W3C validator