MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnring Structured version   Visualization version   GIF version

Theorem domnring 19236
Description: A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnring (𝑅 ∈ Domn → 𝑅 ∈ Ring)

Proof of Theorem domnring
StepHypRef Expression
1 domnnzr 19235 . 2 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 nzrring 19201 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  Ringcrg 18487  NzRingcnzr 19197  Domncdomn 19220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-nul 4759
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-iota 5820  df-fv 5865  df-ov 6618  df-nzr 19198  df-domn 19224
This theorem is referenced by:  domneq0  19237  abvn0b  19242  fidomndrnglem  19246  fidomndrng  19247  domnchr  19820  znidomb  19850  deg1ldgdomn  23792  ply1domn  23821  proot1mul  37297  proot1hash  37298  deg1mhm  37305  lidldomn1  41239  uzlidlring  41247  domnmsuppn0  41468
  Copyright terms: Public domain W3C validator