MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnchr Structured version   Visualization version   GIF version

Theorem domnchr 19820
Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
domnchr (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))

Proof of Theorem domnchr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2791 . . 3 ((chr‘𝑅) ≠ 0 ↔ ¬ (chr‘𝑅) = 0)
2 domnring 19236 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
3 eqid 2621 . . . . . . . . . . 11 (chr‘𝑅) = (chr‘𝑅)
43chrcl 19814 . . . . . . . . . 10 (𝑅 ∈ Ring → (chr‘𝑅) ∈ ℕ0)
52, 4syl 17 . . . . . . . . 9 (𝑅 ∈ Domn → (chr‘𝑅) ∈ ℕ0)
65adantr 481 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ0)
7 simpr 477 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 0)
8 eldifsn 4294 . . . . . . . 8 ((chr‘𝑅) ∈ (ℕ0 ∖ {0}) ↔ ((chr‘𝑅) ∈ ℕ0 ∧ (chr‘𝑅) ≠ 0))
96, 7, 8sylanbrc 697 . . . . . . 7 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℕ0 ∖ {0}))
10 dfn2 11265 . . . . . . 7 ℕ = (ℕ0 ∖ {0})
119, 10syl6eleqr 2709 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℕ)
12 domnnzr 19235 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
13 nzrring 19201 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
14 chrnzr 19818 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1513, 14syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
1615ibi 256 . . . . . . . 8 (𝑅 ∈ NzRing → (chr‘𝑅) ≠ 1)
1712, 16syl 17 . . . . . . 7 (𝑅 ∈ Domn → (chr‘𝑅) ≠ 1)
1817adantr 481 . . . . . 6 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ≠ 1)
19 eluz2b3 11722 . . . . . 6 ((chr‘𝑅) ∈ (ℤ‘2) ↔ ((chr‘𝑅) ∈ ℕ ∧ (chr‘𝑅) ≠ 1))
2011, 18, 19sylanbrc 697 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ (ℤ‘2))
212ad2antrr 761 . . . . . . . . . . . 12 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Ring)
22 eqid 2621 . . . . . . . . . . . . 13 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
2322zrhrhm 19800 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
2421, 23syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
25 simprl 793 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
26 simprr 795 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
27 zringbas 19764 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
28 zringmulr 19767 . . . . . . . . . . . 12 · = (.r‘ℤring)
29 eqid 2621 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
3027, 28, 29rhmmul 18667 . . . . . . . . . . 11 (((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3124, 25, 26, 30syl3anc 1323 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)))
3231eqeq1d 2623 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅)))
33 simpll 789 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑅 ∈ Domn)
34 eqid 2621 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
3527, 34rhmf 18666 . . . . . . . . . . . 12 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3624, 35syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3736, 25ffvelrnd 6326 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅))
3836, 26ffvelrnd 6326 . . . . . . . . . 10 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅))
39 eqid 2621 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
4034, 29, 39domneq0 19237 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ ((ℤRHom‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ ((ℤRHom‘𝑅)‘𝑦) ∈ (Base‘𝑅)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4133, 37, 38, 40syl3anc 1323 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((((ℤRHom‘𝑅)‘𝑥)(.r𝑅)((ℤRHom‘𝑅)‘𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4232, 41bitrd 268 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
4342biimpd 219 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅) → (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
44 zmulcl 11386 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
4544adantl 482 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
463, 22, 39chrdvds 19816 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 · 𝑦) ∈ ℤ) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
4721, 45, 46syl2anc 692 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) ↔ ((ℤRHom‘𝑅)‘(𝑥 · 𝑦)) = (0g𝑅)))
483, 22, 39chrdvds 19816 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
4921, 25, 48syl2anc 692 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑥 ↔ ((ℤRHom‘𝑅)‘𝑥) = (0g𝑅)))
503, 22, 39chrdvds 19816 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5121, 26, 50syl2anc 692 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ 𝑦 ↔ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅)))
5249, 51orbi12d 745 . . . . . . 7 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦) ↔ (((ℤRHom‘𝑅)‘𝑥) = (0g𝑅) ∨ ((ℤRHom‘𝑅)‘𝑦) = (0g𝑅))))
5343, 47, 523imtr4d 283 . . . . . 6 (((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
5453ralrimivva 2967 . . . . 5 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦)))
55 isprm6 15369 . . . . 5 ((chr‘𝑅) ∈ ℙ ↔ ((chr‘𝑅) ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((chr‘𝑅) ∥ (𝑥 · 𝑦) → ((chr‘𝑅) ∥ 𝑥 ∨ (chr‘𝑅) ∥ 𝑦))))
5620, 54, 55sylanbrc 697 . . . 4 ((𝑅 ∈ Domn ∧ (chr‘𝑅) ≠ 0) → (chr‘𝑅) ∈ ℙ)
5756ex 450 . . 3 (𝑅 ∈ Domn → ((chr‘𝑅) ≠ 0 → (chr‘𝑅) ∈ ℙ))
581, 57syl5bir 233 . 2 (𝑅 ∈ Domn → (¬ (chr‘𝑅) = 0 → (chr‘𝑅) ∈ ℙ))
5958orrd 393 1 (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  cdif 3557  {csn 4155   class class class wbr 4623  wf 5853  cfv 5857  (class class class)co 6615  0cc0 9896  1c1 9897   · cmul 9901  cn 10980  2c2 11030  0cn0 11252  cz 11337  cuz 11647  cdvds 14926  cprime 15328  Basecbs 15800  .rcmulr 15882  0gc0g 16040  Ringcrg 18487   RingHom crh 18652  NzRingcnzr 19197  Domncdomn 19220  ringzring 19758  ℤRHomczrh 19788  chrcchr 19790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-fz 12285  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-gcd 15160  df-prm 15329  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-ghm 17598  df-od 17888  df-cmn 18135  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-rnghom 18655  df-subrg 18718  df-nzr 19198  df-domn 19224  df-cnfld 19687  df-zring 19759  df-zrh 19792  df-chr 19794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator