MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znidomb Structured version   Visualization version   GIF version

Theorem znidomb 20708
Description: The ℤ/n structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znidomb (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))

Proof of Theorem znidomb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2z 12015 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ∈ ℤ)
3 nnz 12005 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
43adantr 483 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℤ)
5 hash2 13767 . . . . . . 7 (♯‘2o) = 2
6 isidom 20077 . . . . . . . . . . . 12 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
76simprbi 499 . . . . . . . . . . 11 (𝑌 ∈ IDomn → 𝑌 ∈ Domn)
8 domnnzr 20068 . . . . . . . . . . 11 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
97, 8syl 17 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
10 eqid 2821 . . . . . . . . . . . 12 (Base‘𝑌) = (Base‘𝑌)
1110isnzr2 20036 . . . . . . . . . . 11 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
1211simprbi 499 . . . . . . . . . 10 (𝑌 ∈ NzRing → 2o ≼ (Base‘𝑌))
139, 12syl 17 . . . . . . . . 9 (𝑌 ∈ IDomn → 2o ≼ (Base‘𝑌))
1413adantl 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2o ≼ (Base‘𝑌))
15 df2o2 8118 . . . . . . . . . 10 2o = {∅, {∅}}
16 prfi 8793 . . . . . . . . . 10 {∅, {∅}} ∈ Fin
1715, 16eqeltri 2909 . . . . . . . . 9 2o ∈ Fin
18 fvex 6683 . . . . . . . . 9 (Base‘𝑌) ∈ V
19 hashdom 13741 . . . . . . . . 9 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2017, 18, 19mp2an 690 . . . . . . . 8 ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌))
2114, 20sylibr 236 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
225, 21eqbrtrrid 5102 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ (♯‘(Base‘𝑌)))
23 zntos.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
2423, 10znhash 20705 . . . . . . 7 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
2524adantr 483 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘(Base‘𝑌)) = 𝑁)
2622, 25breqtrd 5092 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ 𝑁)
27 eluz2 12250 . . . . 5 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
282, 4, 26, 27syl3anbrc 1339 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ (ℤ‘2))
29 nncn 11646 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3029ad2antrr 724 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℂ)
31 nncn 11646 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
3231ad2antrl 726 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℂ)
33 nnne0 11672 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
3433ad2antrl 726 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ≠ 0)
3530, 32, 34divcan1d 11417 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 𝑥) · 𝑥) = 𝑁)
3635fveq2d 6674 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = ((ℤRHom‘𝑌)‘𝑁))
377ad2antlr 725 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Domn)
38 domnring 20069 . . . . . . . . . . . 12 (𝑌 ∈ Domn → 𝑌 ∈ Ring)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Ring)
40 eqid 2821 . . . . . . . . . . . 12 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
4140zrhrhm 20659 . . . . . . . . . . 11 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
4239, 41syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
43 simprr 771 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥𝑁)
44 nnz 12005 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
4544ad2antrl 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℤ)
463ad2antrr 724 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℤ)
47 dvdsval2 15610 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4845, 34, 46, 47syl3anc 1367 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4943, 48mpbid 234 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℤ)
50 zringbas 20623 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
51 zringmulr 20626 . . . . . . . . . . 11 · = (.r‘ℤring)
52 eqid 2821 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
5350, 51, 52rhmmul 19479 . . . . . . . . . 10 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ (𝑁 / 𝑥) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
5442, 49, 45, 53syl3anc 1367 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
55 iddvds 15623 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁𝑁)
5646, 55syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁𝑁)
57 nnnn0 11905 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
5857ad2antrr 724 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℕ0)
59 eqid 2821 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
6023, 40, 59zndvds0 20697 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑁 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6158, 46, 60syl2anc 586 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6256, 61mpbird 259 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑁) = (0g𝑌))
6336, 54, 623eqtr3d 2864 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌))
6450, 10rhmf 19478 . . . . . . . . . . 11 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6542, 64syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6665, 49ffvelrnd 6852 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌))
6765, 45ffvelrnd 6852 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌))
6810, 52, 59domneq0 20070 . . . . . . . . 9 ((𝑌 ∈ Domn ∧ ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌) ∧ ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
6937, 66, 67, 68syl3anc 1367 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
7063, 69mpbid 234 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)))
7123, 40, 59zndvds0 20697 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 𝑥) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
7258, 49, 71syl2anc 586 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
73 nnre 11645 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7473ad2antrr 724 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℝ)
75 nnre 11645 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
7675ad2antrl 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℝ)
77 nngt0 11669 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 0 < 𝑁)
7877ad2antrr 724 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑁)
79 nngt0 11669 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 0 < 𝑥)
8079ad2antrl 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑥)
8174, 76, 78, 80divgt0d 11575 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < (𝑁 / 𝑥))
82 elnnz 11992 . . . . . . . . . . . 12 ((𝑁 / 𝑥) ∈ ℕ ↔ ((𝑁 / 𝑥) ∈ ℤ ∧ 0 < (𝑁 / 𝑥)))
8349, 81, 82sylanbrc 585 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℕ)
84 dvdsle 15660 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 / 𝑥) ∈ ℕ) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
8546, 83, 84syl2anc 586 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
86 1red 10642 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 1 ∈ ℝ)
87 0lt1 11162 . . . . . . . . . . . . 13 0 < 1
8887a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 1)
89 lediv2 11530 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
9076, 80, 86, 88, 74, 78, 89syl222anc 1382 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
91 nnle1eq1 11668 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9291ad2antrl 726 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9330div1d 11408 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 1) = 𝑁)
9493breq1d 5076 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 1) ≤ (𝑁 / 𝑥) ↔ 𝑁 ≤ (𝑁 / 𝑥)))
9590, 92, 943bitr3rd 312 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ≤ (𝑁 / 𝑥) ↔ 𝑥 = 1))
9685, 95sylibd 241 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑥 = 1))
9772, 96sylbid 242 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) → 𝑥 = 1))
9823, 40, 59zndvds0 20697 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
9958, 45, 98syl2anc 586 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
100 nnnn0 11905 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
101100ad2antrl 726 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℕ0)
102 dvdseq 15664 . . . . . . . . . . 11 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑥𝑁𝑁𝑥)) → 𝑥 = 𝑁)
103102expr 459 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑥𝑁) → (𝑁𝑥𝑥 = 𝑁))
104101, 58, 43, 103syl21anc 835 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁𝑥𝑥 = 𝑁))
10599, 104sylbid 242 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) → 𝑥 = 𝑁))
10697, 105orim12d 961 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)) → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
10770, 106mpd 15 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 = 1 ∨ 𝑥 = 𝑁))
108107expr 459 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ 𝑥 ∈ ℕ) → (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
109108ralrimiva 3182 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
110 isprm2 16026 . . . 4 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))))
11128, 109, 110sylanbrc 585 . . 3 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℙ)
112111ex 415 . 2 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn → 𝑁 ∈ ℙ))
11323znfld 20707 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
114 fldidom 20078 . . 3 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
115113, 114syl 17 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
116112, 115impbid1 227 1 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  c0 4291  {csn 4567  {cpr 4569   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  2oc2o 8096  cdom 8507  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  cle 10676   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  chash 13691  cdvds 15607  cprime 16015  Basecbs 16483  .rcmulr 16566  0gc0g 16713  Ringcrg 19297  CRingccrg 19298   RingHom crh 19464  Fieldcfield 19503  NzRingcnzr 20030  Domncdomn 20053  IDomncidom 20054  ringzring 20617  ℤRHomczrh 20647  ℤ/nczn 20650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-nzr 20031  df-rlreg 20056  df-domn 20057  df-idom 20058  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zn 20654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator