MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enreceq Structured version   Visualization version   GIF version

Theorem enreceq 10474
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enreceq (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))

Proof of Theorem enreceq
StepHypRef Expression
1 enrer 10471 . . . 4 ~R Er (P × P)
21a1i 11 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ~R Er (P × P))
3 opelxpi 5578 . . . 4 ((𝐴P𝐵P) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
43adantr 483 . . 3 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ⟨𝐴, 𝐵⟩ ∈ (P × P))
52, 4erth 8324 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ))
6 enrbreq 10473 . 2 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
75, 6bitr3d 283 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cop 4559   class class class wbr 5052   × cxp 5539  (class class class)co 7142   Er wer 8272  [cec 8273  Pcnp 10267   +P cpp 10269   ~R cer 10272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-omul 8093  df-er 8275  df-ec 8277  df-ni 10280  df-pli 10281  df-mi 10282  df-lti 10283  df-plpq 10316  df-mpq 10317  df-ltpq 10318  df-enq 10319  df-nq 10320  df-erq 10321  df-plq 10322  df-mq 10323  df-1nq 10324  df-rq 10325  df-ltnq 10326  df-np 10389  df-plp 10391  df-ltp 10393  df-enr 10463
This theorem is referenced by:  ltsrpr  10485  m1p1sr  10500  m1m1sr  10501  ltsosr  10502  0idsr  10505  1idsr  10506  00sr  10507  recexsrlem  10511  map2psrpr  10518
  Copyright terms: Public domain W3C validator