MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1linds Structured version   Visualization version   GIF version

Theorem f1linds 20212
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Assertion
Ref Expression
f1linds ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)

Proof of Theorem f1linds
StepHypRef Expression
1 f1f 6139 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷𝑆)
2 fcoi2 6117 . . . 4 (𝐹:𝐷𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
31, 2syl 17 . . 3 (𝐹:𝐷1-1𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
433ad2ant3 1104 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
5 simp1 1081 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝑊 ∈ LMod)
6 linds2 20198 . . . 4 (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊)
763ad2ant2 1103 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → ( I ↾ 𝑆) LIndF 𝑊)
8 dmresi 5492 . . . . . 6 dom ( I ↾ 𝑆) = 𝑆
9 f1eq3 6136 . . . . . 6 (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆))
108, 9ax-mp 5 . . . . 5 (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆)
1110biimpri 218 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷1-1→dom ( I ↾ 𝑆))
12113ad2ant3 1104 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹:𝐷1-1→dom ( I ↾ 𝑆))
13 f1lindf 20209 . . 3 ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊𝐹:𝐷1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
145, 7, 12, 13syl3anc 1366 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
154, 14eqbrtrrd 4709 1 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685   I cid 5052  dom cdm 5143  cres 5145  ccom 5147  wf 5922  1-1wf1 5923  cfv 5926  LModclmod 18911   LIndF clindf 20191  LIndSclinds 20192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-slot 15908  df-base 15910  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lindf 20193  df-linds 20194
This theorem is referenced by:  islindf3  20213  lindsmm  20215  lbslcic  20228
  Copyright terms: Public domain W3C validator